Trent University, Winter 2018

MATH 1550H Test \#2

Friday, 16 March
Time: 50 minutes

| Name: \quad Solutions |
| :--- | :---: |
| $\quad 0123456$ |

Question Mark

Total _ / 30

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator, a standard normal table, and an aid sheet.

1. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. A fair standard die is rolled until either 1 or 2 comes up. What are the expected value $E(Y)$ and variance $V(Y)$ of the random variable Y that counts the number of rolls that occur in this experiment?
b. Verify that $f(x)=\left\{\begin{array}{cl}\frac{2 x}{\left(1+x^{2}\right)^{2}} & x \geq 0 \\ 0 & x \leq 0\end{array}\right.$ is a valid density function.
c. A fair coin is tossed three times. The random variable U counts how many tails came up in the three tosses and the random variable V counts how many heads came up on the second of the three tosses. Determine whether U and V are independent or not.

Solutions. a. Each face of a fair standard die has a probability of $\frac{1}{6}$ of coming up on any given roll, so the probability that a roll will come up with 1 or 2 is $\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$. Rolling the die until it comes up with 1 or 2 and counting the number of rolls required therefore has a geometric distribution with probability of success $p=\frac{1}{3}$ and of failure of $q=1-p=\frac{2}{3}$ on each triel. It follows that $E(Y)=\frac{1}{p}=\frac{1}{1 / 3}=3$ and $V(Y)=\frac{q}{p^{2}}=\frac{2 / 3}{(1 / 3)^{2}}=\frac{2}{3} \cdot 3^{2}=6$.
b. First, when $x \leq 0, f(x)=0 \geq 0$, and when $x \geq 0, f(x)=\frac{2 x}{\left(1+x^{2}\right)^{2}} \geq 0$ because $2 x \geq 0$ and $\left(1+x^{2}\right)^{2} \geq 1>0$. Thus $f(x) \geq 0$ for all x, as required.

Second, we need to check that $\int_{-\infty}^{\infty} f(x) d x=1$. We will make use of the substitution $u=1+x^{2}$, so $d u=2 x d x$. Note that when $x=0, u=1+0^{2}=1$, and as $x \rightarrow \infty, u \rightarrow \infty$. Then :

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{0} 0 d x+\int_{0}^{\infty} \frac{2 x}{\left(1+x^{2}\right)^{2}} d x=0+\int_{1}^{\infty} \frac{1}{u^{2}} d u \\
& =\left.\frac{-1}{u}\right|_{1} ^{\infty}=\left(\frac{-1}{\infty}\right)-\left(\frac{-1}{1}\right)=(-0)-(-1)=1
\end{aligned}
$$

Hence $f(x)$ saitisfies both parts of the definition for a valid density function.
c. U and V are not independent. Note that $P(V=1)=P(H)=\frac{1}{2}$ while $P(U=3)=$ $P(T T T)=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$. However, if $U=3$, the second toss must have been a tail, making $V=1$ impossible, so $P(U=3 \& V=1)=0$. Since $P(U=3 \& V=1)=0 \neq \frac{1}{16}=$ $\frac{1}{8} \cdot \frac{1}{2}=P(U=3) P(V=1), U$ and V cannot be independent.
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Find the expected value $E(W)$ and variance $V(W)$ of the continuous random variable W that has as its density function $h(w)=\left\{\begin{array}{cl}\frac{3}{4}\left(1-w^{2}\right) & -1 \leq w \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.
b. A fair four-sided die with faces numbered $0,2,3$, and 5 , respectively, is rolled once. What are the expected value and variance of the number that comes up?
c. Suppose that the continuous random variable Z has a standard normal distribution. Find $P(Z>1.26)$.

Solutions. a. Here we go:

$$
\begin{aligned}
E(W) & =\int_{-\infty}^{\infty} w \cdot h(w) d w=\int_{-\infty}^{-1} w \cdot 0 d w+\int_{-1}^{1} w \cdot \frac{3}{4}\left(1-w^{2}\right) d w+\int_{1}^{\infty} w \cdot 0 d w \\
& =0+\frac{3}{4} \int_{-1}^{1}\left(w-w^{3}\right) d w+0=\left.\frac{3}{4}\left(\frac{w^{2}}{2}-\frac{w^{4}}{4}\right)\right|_{-1} ^{1} \\
& =\frac{3}{4}\left(\frac{1^{2}}{2}-\frac{1^{4}}{4}\right)-\frac{3}{4}\left(\frac{(-1)^{2}}{2}-\frac{(-1)^{4}}{4}\right)=\frac{3}{4}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{4}\right) \\
& =\frac{3}{4} \cdot \frac{1}{4}-\frac{3}{4} \cdot \frac{1}{4}=\frac{3}{16}-\frac{3}{16}=0 \quad \text { One down! } \\
E\left(W^{2}\right) & =\int_{-\infty}^{\infty} w^{2} \cdot h(w) d w=\int_{-\infty}^{-1} w^{2} \cdot 0 d w+\int_{-1}^{1} w^{2} \cdot \frac{3}{4}\left(1-w^{2}\right) d w+\int_{1}^{\infty} w^{2} \cdot 0 d w \\
& =0+\frac{3}{4} \int_{-1}^{1}\left(w^{2}-w^{4}\right) d w+0=\left.\frac{3}{4}\left(\frac{w^{3}}{3}-\frac{w^{5}}{5}\right)\right|_{-1} ^{1} \\
& =\frac{3}{4}\left(\frac{1^{3}}{3}-\frac{1^{5}}{5}\right)-\frac{3}{4}\left(\frac{(-1)^{3}}{3}-\frac{(-1)^{5}}{5}\right)=\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)-\frac{3}{4}\left(\frac{-1}{3}-\frac{-1}{5}\right) \\
& =\frac{3}{4} \cdot \frac{2}{15}-\frac{3}{4} \cdot \frac{-2}{15}=\frac{1}{10}-\frac{-1}{10}=\frac{2}{10}=\frac{1}{5}
\end{aligned}
$$

Thus $V(W)=E\left(W^{2}\right)-[E(W)]^{2}=\frac{1}{5}-0^{2}=\frac{1}{5}$.
b. Each face on a fair die has an equal chance of coming up. Since the given die has four faces, this equal probability is $\frac{1}{4}=0.25$. If X is the random variable that gives the number on the face that comes up, then the expected value is $E(X)=\sum_{k} k \cdot P(X=k)=$ $0 \cdot \frac{1}{4}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{4}+5 \cdot \frac{1}{4}=\frac{10}{4}=\frac{5}{2}=2.5$. Similarly, $E\left(X^{2}\right)=\sum_{k} k^{2} \cdot P(X=k)=$ $0^{2} \cdot \frac{1}{4}+2^{2} \cdot \frac{1}{4}+3^{2} \cdot \frac{1}{4}+5^{2} \cdot \frac{1}{4}=\frac{38}{4}=\frac{19}{2}=9.5$. Then $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=$ $\frac{19}{2}-\left(\frac{5}{2}\right)^{2}=\frac{38}{4}-\frac{25}{4}=\frac{13}{4}=3.25$.
c. Note that $P(Z>1.26)=1-P(Z \leq 1.26)$. Consulting our cumulative standard normal table, the entry in the row for $z=1.2$ and the column for 0.06 gives $P(Z \leq 1.26) \approx 0.8962$. It follows that $P(Z>1.26)=1-P(Z \leq 1.26) \approx 1-0.8962=0.1038$.
c. (Alternate) By the symmetry of the density function of the standard normal distribution about $z=0, P(Z>1.26)=P(Z<-1.26)$. Consulting our cumulative standard normal table, the entry in the row for $z=-1.2$ and the column for 0.06 gives $P(Z \leq 1.26) \approx$ 0.1038. Thus $P(Z>1.26)=P(Z<-1.26) \approx 0.1038$.
3. Do one (1) of \mathbf{a} or \mathbf{b}. [10]
a. A fair coin is tossed until it comes up tails. This experiment is repeated independently three times, with the random variables X_{1}, X_{2}, and X_{3} recording the number of tosses on the first, second, and third run of the experiment, respectively. Find the expected value and variance of $X=X_{1}+X_{2}+X_{3}$, as well as the probability function of X.
b. The continuous random variable Y has density function $g(y)=\left\{\begin{array}{cc}y e^{-y} & y \geq 0 \\ 0 & y \leq 0\end{array}\right.$. Show that $g(y)$ is a valid density function and find the expected value of Y.

Solutions. a. Observe that $X=X_{1}+X_{2}+X_{3}$ counts the number of tosses of a fair coin required for a third head to come up. Thus X has a negative binomial distribution with $p=$ $\frac{1}{2}, q=1-\frac{1}{2}=\frac{1}{2}$, and $k=3$ successes. It follows that the probability function of X is given by $m(x)=P(k$ th success on x th trial $)=\binom{x-1}{k-1} q^{x-k} p^{k}=\binom{x-1}{3-1}\left(\frac{1}{2}\right)^{x-3}\left(\frac{1}{2}\right)^{3}=$ $\binom{x-1}{2}\left(\frac{1}{2}\right)^{x}$, when x is an integer ≥ 3, and $m(x)=0$ otherwise. It also follows that $E(X)=\frac{k}{p}=\frac{3}{1 / 2}=6$ and $V(X)=\frac{k q}{p^{2}}=\frac{3 \cdot(1 / 2)}{(1 / 2)^{2}}=\frac{3}{1 / 2}=6$.
b. First, observe that when $y \leq 0, g(y)=0 \geq 0$, and when $y \geq 0, g(y)=y e^{-y} \geq 0$ because $y \geq 0$ and $e^{-y}>0$. Second, we check that $\int_{-\infty}^{\infty} g(y) d y=1$. We will use intregration by parts with $u=y$ and $v^{\prime}=e^{-y}$, so that $u^{\prime}=1$ and $v=(-1) e^{-y}$. [The fact that $\int e^{-y} d y=(-1) e^{-y}$ is left to the alert reader.]

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(y) d y & =\int_{-\infty}^{0} 0 d y+\int_{0}^{\infty} y e^{-y} d y=0+\left.y \cdot(-1) e^{-y}\right|_{0} ^{\infty}-\int_{0}^{\infty} 1 \cdot(-1) e^{-y} d y \\
& =\left.\left[-y e^{-y}\right]\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-y} d y=\left[-\infty \cdot e^{-\infty}\right]-\left[0 e^{-0}\right]+\left.(-1) e^{-y}\right|_{0} ^{\infty} \\
& =0-0+(-1) e^{-\infty}-(-1) e^{-0}=-0+1=1 \quad\left[e^{-y} \rightarrow 0 \text { beats } y \rightarrow \infty .\right]
\end{aligned}
$$

Thus $g(y)$ satisfies both conditions to be a valid density function. Third, we compute $E(Y)$. We will use parts again, this time with $u=y^{2}$ and $v^{\prime}=e^{-y}$, so $u^{\prime}=2 y$ and $v=(-1) e^{-y}$; we will also use the part of the calculation above that showed that $\int_{0}^{\infty} y e^{-y} d y=1$.

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{\infty} y \cdot g(y) d y=\int_{-\infty}^{0} y \cdot 0 d y+\int_{0}^{\infty} y \cdot y e^{-y} d y=\int_{-\infty}^{0} 0 d y+\int_{0}^{\infty} y^{2} e^{-y} d y \\
& =0+\left.y^{2} \cdot(-1) e^{-y}\right|_{0} ^{\infty}-\int_{0}^{\infty} 2 y \cdot(-1) e^{-y} d y=\left.\left[-y^{2} e^{-y}\right]\right|_{0} ^{\infty}+2 \int_{0}^{\infty} y e^{-y} d y \\
& =\left[-\infty^{2} e^{-\infty}\right]-\left[-0^{2} e^{-y}\right]+2 \cdot 1 \quad(\text { by the previous calculation }) \\
& =0-0+2=2 \quad\left[e^{-y} \rightarrow 0 \text { beats } y^{2} \rightarrow \infty .\right]
\end{aligned}
$$

