Trent University, Winter 2018

MATH 1550H Test \#2

Friday, 16 March

Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator, a standard normal table, and an aid sheet.

1. Do any two (2) of a-c. $[10=2 \times 5$ each]
a. A fair standard die is rolled until either 1 or 2 comes up. What are the expected value $E(Y)$ and variance $V(Y)$ of the random variable Y that counts the number of rolls that occur in this experiment?
b. Verify that $f(x)=\left\{\begin{array}{cl}\frac{2 x}{\left(1+x^{2}\right)^{2}} & x \geq 0 \\ 0 & x \leq 0\end{array}\right.$ is a valid density function.
c. A fair coin is tossed three times. The random variable U counts how many tails came up in the three tosses and the random variable V counts how many heads came up on the second of the three tosses. Determine whether U and V are independent or not.
2. Do any two (2) of a-c. $[10=2 \times 5$ each]
a. Find the expected value $E(W)$ and variance $V(W)$ of the continuous random variable W that has as its density function $h(w)=\left\{\begin{array}{cl}\frac{3}{4}\left(1-w^{2}\right) & -1 \leq w \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.
b. A fair four-sided die with faces numbered $0,2,3$, and 5 , respectively, is rolled once. What are the expected value and variance of the number that comes up?
c. Suppose that the continuous random variable Z has a standard normal distribution. Find $P(Z>1.26)$.
3. Do one (1) of \mathbf{a} or \mathbf{b}. [10]
a. A fair coin is tossed until it comes up tails. This experiment is repeated independently three times, with the random variables X_{1}, X_{2}, and X_{3} recording the number of tosses on the first, second, and third run of the experiment, respectively. Find the expected value and variance of $X=X_{1}+X_{2}+X_{3}$, as well as the probability function of X.
b. The continuous random variable Y has density function $g(y)=\left\{\begin{array}{cc}y e^{-y} & y \geq 0 \\ 0 & y \leq 0\end{array}\right.$. Show that $g(y)$ is a valid density function and find the expected value of Y.
