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Solution to Assignment # 6
A Continuous Density?

1. Determine whether f(x) =

{ 1
2e

x x ≤ 0
1
2e
−x x ≥ 0

is a valid probability density. [10]

Solution. First, since et > 0 for all real numbers t, f(x) > 0 (and thus also f(x) ≥ 0) for all x
by the definition of f(x). (Each part of the definition of f(x) is 1

2e
t, where t = ±x.) Thus f(x)

satisfies the first part of the definition of a valid density function.
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The antiderivative of ex is just ex; for the second integral we use

the substitution u = −x, so du = −dx, and thus dx = (−1) du.

We will keeep the limits in terms of x and substitute back after

finding the antiderivative.
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as is also needed for a valid density function.
Since it satisfies both requirements, f(x) is a valid density function. �


