
Mathematics 1550H – Introduction to probability
Trent University, Winter 2018

Solutions to the Final Examination
Tuesday, 17 April, 2018

Spatio-temporal locus: 19:00–22:00 in the Gym Inflicted by Stefan B�lan�k.
Instructions: Do both of parts Bernoulli and Chebyshev, and, if you wish, part Dopey.
Show all your work and simplify answers as much as practical. If in doubt about something, ask!

Aids: Calculator; one 8.5′′ × 11′′ or A4 aid sheet; standard normal table; lots of neurons.

Part Bernoulli. Do all of 1–5. [Subtotal = 68/100]

1. A fair six-sided non-standard die has faces numbered 0, 1, 1, 2, 2, and 2, respectively.
The random variable X records the number that comes up on a single roll of the die.

a. What is the probability function of X? [5]

b. Compute the expected value E(X) and variance V (X) of X. [5]

Solutions. a. Since the die is fair, each of the six faces has an equal probability of 1
6

of coming up. If X returns the number on the face that comes up, then the probability
function of X is:

m(k) = P (X = k) =
# faces with k

6
=


1
6 k = 0
2
6 k = 1
3
6 k = 2

0 otherwise

=


1
6 k = 0
1
3 k = 1
1
2 k = 2

0 otherwise

For those who like formulas, this comes down to m(k) =

{ 1
6 (k + 1) k = 0, 1, 2

0 otherwise
. �

b. By definition:

E(X) =

2∑
k=0

kP (X = k) = 0 · 1

6
+ 1 · 1

3
+ 2 · 1

2
= 0 +

1

3
+ 1 =

4

3

E
(
X2
)

=

2∑
k=0

k2P (X = k) = 02 · 1

6
+ 12 · 1

3
+ 22 · 1

2
= 0 +

1

3
+ 2 =

7

3

V (X) = E
(
X2
)
− [E(X)]

2
=

7

3
−
[

4

3

]2
=

21

9
− 16

9
=

5

9
�
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2. Let T be a continuous random variable with the following probability density function:

f(t) =

{ |t| −1 ≤ t ≤ 1

0 otherwise

a. Verify that f(t) is indeed a probability density function. [8]

b. If you know that T ≤ 1
2 , what is the probability that T ≥ 0? [7]

Solutions with calculus. a. First, f(t) = |t| ≥ 0 when −1 ≤ t ≤ 1, and f(t) = 0 ≥ 0
otherwise, so f(t) ≥ 0 for all t.

Second, we need to check that
∫∞
−∞ f(t) dt = 1. Note that |t| =

{
t t ≥ 0

−t t ≤ 0
, which

allows us to get rid of the absolute value by breaking up the integral appropriately.∫ ∞
−∞

f(t) dt =

∫ −1
−∞

0 dt+

∫ 1

−1
|t| dt+

∫ ∞
1

0 dt = 0 +

∫ 0

−1
(−t) dt+

∫ 1

0

t dt+ 0

= − t
2

2

∣∣∣∣0
−1

+
t2

2

∣∣∣∣1
0

=

(
−02

2

)
−
(
− (−1)2

2

)
+

12

2
− 02

2

= 0−
(
−1

2

)
+

1

2
− 0 =

1

2
+

1

2
= 1

Thus f(t) satisfies both of the defining conditions to be a probability density function. �

b. This is a conditional probability problem: it is asking for the probability of T ≥ 0 given

T ≤ 1
2 . Since P

(
T ≥ 0 | T ≤ 1

2

)
=

P(T≥0 & T≤ 1
2 )

P(T≤ 1
2 )

, we need to compute both P
(
T ≤ 1

2

)
and P

(
T ≥ 0 & T ≤ 1

2

)
.

P

(
T ≤ 1

2

)
=

∫ 1/2

−∞
f(t) dt =

∫ −1
−∞

0 dt+

∫ 1/2

−1
|t| dt = 0 +

∫ 0

−1
(−t) dt+

∫ 1/2

0

t dt

= − t
2

2

∣∣∣∣0
−1

+
t2

2

∣∣∣∣1/2
0

=

(
−02

2

)
−
(
− (−1)2

2

)
+

(
1
2

)2
2
− 02

2

= 0−
(
−1

2

)
+

1
4

2
− 0 =

1

2
+

1

4
÷ 2 =

1

2
+

1

8
=

5

8

P

(
T ≥ 0 & T ≤ 1

2

)
= P

(
0 ≤ T ≤ 1

2

)
=

∫ 1/2

0

f(t) dt =

∫ 1/2

0

|t| dt =

∫ 1/2

0

t dt

=
t2

2

∣∣∣∣1/2
0

=

(
1
2

)2
2
− 02

2
=

1
4

2
− 0 =

1

4
÷ 2 =

1

8

It follows that P
(
T ≥ 0 | T ≤ 1

2

)
=

P(T≥0 & T≤ 1
2 )

P(T≤ 1
2 )

= 1/8
5/8 = 1

8 ·
8
5 = 1

5 . �
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Solutions without calculus. a. First, f(t) = |t| ≥ 0 when −1 ≤ t ≤ 1, and
f(t) = 0 ≥ 0 otherwise, so f(t) ≥ 0 for all t.

Second, we need to check that
∫∞
−∞ f(t) dt = 1. This integral is just the area of the

region under the graph of y = f(t) and above the horizontal axis. Consider the graph of

y = f(t) =

{ |t| −1 ≤ t ≤ 1

0 otherwise
:

Outside of −1 ≤ t ≤ 1 the graph lies right on the horizontal axis and contributes no
area. For −1 ≤ t ≤ 1 the area under the graph consists of two right triangles, each with
base 1 and height 1. The area under the graph is therefore 1

2 · 1 · 1 + 1
2 · 1 · 1 = 1

2 + 1
2 = 1,

as required.
Thus f(t) satisfies the defining conditions to be a probability density function. �

b. This is a conditional probability problem: it is asking for the probability of T ≥ 0 given

T ≤ 1
2 . Since P

(
T ≥ 0 | T ≤ 1

2

)
=

P(T≥0 & T≤ 1
2 )

P(T≤ 1
2 )

, we need to compute both P
(
T ≤ 1

2

)
and P

(
T ≥ 0 & T ≤ 1

2

)
. Again, consider the graph of y = f(t).

P
(
T ≥ 0 & T ≤ 1

2

)
is the area under the graph for 0 ≤ t ≤ 1

2 , which is the area of a

right triangle with base 1
2 and height 1

2 . It follows that P
(
T ≥ 0 & T ≤ 1

2

)
= 1

2 ·
1
2 ·

1
2 = 1

8 .

P
(
T ≤ 1

2

)
is the area under the graph for −∞ < t ≤ 1

2 . For −∞ < t < −1 the graph
lies right on the horizontal axis and contributes no area, for −1 ≤ t ≤ 0 the area under
the graph is the area of a right triangle with base 1 and height 1, and for 0 ≤ t ≤ 1

2 the
area under the graph is the area of a right triangle with base 1

2 and height 1
2 . It follows

that P
(
T ≤ 1

2

)
= 0 + 1

2 · 1 · 1 + 1
2 ·

1
2 ·

1
2 = 1

2 + 1
8 = 5

8 .

Thus P
(
T ≥ 0 | T ≤ 1

2

)
=

P(T≥0 & T≤ 1
2 )

P(T≤ 1
2 )

= 1/8
5/8 = 1

8 ·
8
5 = 1

5 . �
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3. A fair coin is tossed until it comes up heads, then tossed some more until it comes
up tails. The random variable Y counts the total number of times the coin is tossed
during the experiment.

a. Find the probability function, expected value, and variance of Y . [12]

b. Use Chebyshev’s Inequality to estimate the probability that Y ≥ 9. [5]

c. Compute the probability that Y ≥ 9. [5]

Solutions. a. Although the definition of “success” changes after the first success, the
probability of success does not because the coin is fair so P (H) = P (T ) = 1

2 . The
experiment therefore amounts to repeating a Bernoulli trial with probability of success
p = 1

2 until the second success. If Y counts the number of tosses required to achieve
the second success, it follows that Y has a negative binomial dstribution with p = 1

2 ,
q = 1− 1

2 = 1
2 , and k = 2. Thus the probability function of Y is

m(y) =

(
y − 1

k − 1

)
pkqy−k =

(
y − 1

2− 1

)(
1

2

)2(
1

2

)y−2
=

(
y − 1

1

)(
1

2

)y
=
y − 1

2y
,

and the expected value and variance of Y are

E(Y ) =
k

p
=

2

1/2
= 2 · 2

1
= 4 and V (Y ) =

kq

p2
=

2 · (1/2)

(1/2)2
=

1

1/4
= 1 · 4

1
= 4 . �

b. Recall that Chebyshev’s Inequality states that for a random variable X with E(X) = µ

and V (X) = σ2 and any ε > 0, we have P (|X − µ| ≥ ε) ≤ σ2

ε2 . From part a, we have
E(Y ) = 4 and V (Y ) = 4, so it follows that

P (Y ≥ 9) = P (Y − 4 ≥ 5) ≤ P (|Y − 4| ≥ 5) ≤ 4

52
=

4

25
= 0.16 . �

c. Here we go:

P (Y ≥ 9) = 1− P (Y < 9) = 1− [P (Y = 2) + P (Y = 3) + P (Y = 4) + P (Y = 5)

+P (Y = 6) + P (Y = 7) + P (Y = 8)]

= 1− [m(2) +m(3) +m(4) +m(5) +m(6) +m(7) +m(8)]

= 1−
[

2− 1

22
+

3− 1

23
+

4− 1

24
+

5− 1

25
+

6− 1

25
+

7− 1

27
+

8− 1

28

]
= 1−

[
1

4
+

2

8
+

3

16
+

4

32
+

5

64
+

6

128
+

7

256

]
= 1−

[
64

256
+

64

256
+

48

256
+

32

256
+

20

256
+

12

256
+

7

256

]
= 1− 247

256
=

9

256
�

Note: As a small sanity check, observe that 9
256 = 0.03515625 < 0.16 = 4

25 .
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4. A hand of five cards is randomly chosen, simultaneously and without replacement,
from a standard 52-card deck.

a. What is the probability that the hand includes all four of one kind∗? [5]

b. What is the probability that the hand includes at least three of one kind? [5]

c. What is the probability that the hand includes four of one kind, given that it
includes at least three of one kind? [5]

Solutions. Note that since the hand is being chosen simultaneously and without replace-
ment, order doesn’t matter, so there are

(
52
5

)
= 2598000 equally likely possible hands.

a. There are
(
13
1

)
= 13 ways to choose the kind for the four of a kind,

(
4
4

)
= 1 way to

choose the four of that kind, and
(
52−4

1

)
=
(
48
1

)
= 48 ways to choose a card of another

kind for the fifth card of the hand. It follows that there are
(
13
1

)(
4
4

)(
48
1

)
= 13 · 1 · 48 = 624

hands which include all four of one kind, and thus the probability of a randomly chosen

hand including four of one kind is P (4 of a kind) =
(13

1 )(4
4)(

48
1 )

(52
5 )

= 624
2598000 ≈ 0.00024. �

b. We first compute the probability of getting exactly three of one kind. There are(
13
1

)
= 13 ways to choose the kind for the three of a kind,

(
4
3

)
= 4 ways to choose three of

that kind, and
(
52−4

2

)
=
(
48
2

)
= 1128 ways to choose two more cards of another kind or kinds

for the rest of the hand. It follows that there are
(
13
1

)(
4
3

)(
48
2

)
= 13 · 4 · 1128 = 58656 hands

which include exactly three of one kind, and thus the probability of a randomly chosen

hand including exactly of one kind is P (3 of a kind) =
(13

1 )(4
4)(

48
2 )

(52
5 )

= 58656
2598000 ≈ 0.02258.

The probability of getting at least three of one kind is the sum of the probabilities of
getting exactly three of one kind and of getting four of one kind:

P (≥ 3 of a kind) = P (3 of a kind) + P (4 of a kind) =

(
13
1

)(
4
4

)(
48
2

)(
52
5

) +

(
13
1

)(
4
4

)(
48
1

)(
52
5

)
=

58656

2598000
+

624

2598000
=

59280

2598000
≈ 0.02282 �

c. This is a conditional probability problem.

P (4 of a kind | ≥ 3 of a kind) =
P (4 of a kind and ≥ 3 of a kind)

P (≥ 3 of a kind)

=
P (4 of a kind)

P (≥ 3 of a kind)
=

(
13
1

)(
4
4

)(
48
2

)
÷
(
52
5

)[(
13
1

)(
4
4

)(
48
2

)
+
(
13
1

)(
4
4

)(
48
1

)]
÷
(
52
5

)
=

(
13
1

)(
4
4

)(
48
2

)(
13
1

)(
4
4

)(
48
2

)
+
(
13
1

)(
4
4

)(
48
1

) =
624

59280
≈ 0.01053 �

∗ Recall that the kinds are A, K, Q, J , 10, 9, 8, 7, 6, 5, 4, 3, and 2. The suits are ♥, ♦, ♣, and ♠.
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5. Suppose U is a continuous random variable that has a normal distribution with ex-
pected value µ = −2 and variance σ2 = 1. Compute P (−1.1 ≤ U ≤ 1.1) with the
help of a standard normal table. [6]

Solution. Recall that if U has a normal distribution with expected value µ = −2 and

variance σ2 = 1, then Z = U−µ
σ = U−(−2)

1 = U + 2 has a standard normal distribution.
Thus:

P (−1.1 ≤ U ≤ 1.1) = P

(
−1.1− (−2)

1
≤ U − (−2)

1
≤ 1.1− (−2)

1

)
= P (−1.1 + 2 ≤ U + 2 ≤ 1.1 + 2)

= P (0.9 ≤ Z ≤ 3.1)

= P (Z ≤ 3.1)− P (Z < 0.9)

. . . which we look up in the standard normal table:

≈ 0.9990− 0.8159 = 0.1831 �

[Parts Chebyshev and Dopey are on page 2.]
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Part Chebyshev. Do any two (2) of 6–9. [Subtotal = 32/100]

6. You are given five dominoes, marked as in the
figure at right.

a. How many ways are there to choose three
of the dominoes and lay them out end-to-
end? [8]

b. If three of the dominoes are chosen at
random and laid out end-to-end randomly,
what is the probability that both pairs of
adjacent ends will match? [8]

Solutions. a. There are
(
5
3

)
= 10 ways to choose three out five dominoes and 32̇ · 1 =

3! = 6 ways to put them in order. Each domino can also be laid out in two ways by
swapping which end faces which ways (for example, the first domino can be laid out as
[1, 2] or as [2, 1]), meaning that there 23 = 8 ways to decide which way to orient three
ordered dominoes. It follows that there are

(
5
3

)
· 3! · 23 = 10 · 6 · 8 = 480 ways to choose

three of the five dominoes and arrange them end-to-end. �

b. There are only six ways three of the five dominoes can be laid out so that both
pairs of adjacent ends match: [1, 2][2, 3][3, 4], [2, 3][3, 4][4, 5], and [3, 4][4, 5][5, 6], and their
reverses [4, 3][3, 2][2, 1], [5, 4][4, 3][3, 2], and [6, 5][5, 4][4, 3]. Since, according to the solution
for part a, there are 480 possible end-to-end arrangements of three of the five dominoes,
the probability that a random arrangement will have both pairs of adjacent ends match is
6

480 = 1
80 = 0.0125. �

7. A frog and a toad have a race of sorts from one end of a straight 3 m track to the
other. The frog hops 10 cm at a time and the toad hops 15 cm at a time, and they
both head straight from the starting line to the finish line. However, the frog and
toad do not move all the time. Every 2 seconds the frog, with equal probability, either
makes a hop toward the finish line or stays still; every 3 seconds the toad, with equal
probability, either makes a hop toward the finish line or stays still. Assuming they
begin at the starting line at the same time, which would you expect to reach the finish
line first? [16]

Solution. The track is 3 m = 300 cm long, so the frog will need to complete 300
10 = 30

jumps to complete the race, while the toad will need to complete 300
15 = 20 jumps to

complete the race. For both the toad and the frog, at each respective time interval, there
is a probability of 1

2 that a jump will be taken. In each case, this gives a negative binomial
distribution with the probability of success being p = 1

2 , with k = 30 required successes for
the frog and k = 20 required successes for the toad, for the number of attempts required
for each to reach the finish line. For the frog this means that the expected number of
attempts required is k

p = 30
1/2 = 60, and for the toad this means that the expected number

of atempts required is k
p = 20

1/2 = 40. Since the frog always takes 2 s between attempts

to jump, the frog would be expected to cross the finish line after 60 · 2 = 120 s; similarly,
since the toad always takes 3 s between attempts to jump, the frog would be expected to
cross the finish line after 40 · 3 = 120 s. Thus neither the frog nor the toad can expect to
reach the finish line first . . . �

7



8. Suppose X1 and X2 are independent continuous random variables that each have an
exponential distribution with λ = 1. Let X = X1 +X2.

a. Compute the expected value, E(X), and variance, V (X), of X. [6]

b. Find the probability density function of X. [10]

Solutions. a. Since X1 and X2 have exponential distributions with λ = 1, we have
E (X1) = E (X2) = 1

λ = 1
1 = 1 and V (X1) = V (X2) = 1

λ2 = 1
12 = 1. It follows that

E(X) = E (X1) + E (X2) = 1 + 1 = 2 and, since X1 and X2 are also independent, that
V (X) = V (X1) + V (X2) = 1 + 1 = 2. �

b. Since X1 and X2 have exponential distributions with λ = 1, both use the probabil-

ity density function f(x) =

{
λe−λx t ≥ 0

0 t < 0
=

{
e−x t ≥ 0

0 t < 0
. The probability density

function of X = X1 +X2 is therefore the convolution of f with itself:

(f ∗ f)(x) =

∫ ∞
−∞

f(x− t)f(t) dt =

∫ 0

−∞
f(x− t) · 0 dt+

∫ ∞
0

f(x− t)e−t dt

=

∫ 0

−∞
0 dt+

{ ∫ x
0
e−(x−t)e−t dt+

∫∞
x

0 · e−t dt x ≥ 0∫∞
0

0 · e−t dt x < 0

= 0 +

{ ∫ x
0
e−x+t−t dt+

∫∞
x

0dt x ≥ 0∫∞
0

0 dt x < 0

=

{ ∫ x
0
e−x dt+ 0 x ≥ 0

0 x < 0
but x is a constant to t, so

=

{
e−x

∫ x
0

1 dt x ≥ 0

0 x < 0
=

{
e−x t|x0 1 dt x ≥ 0

0 x < 0

=

{
e−x(x− 0) x ≥ 0

0 x < 0
=

{
xe−x x ≥ 0

0 x < 0
�
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9. Suppose the discrete random variables X and Y are jointly distributed according to
the following table:

Y \X 2 3 4
−1 0.1 0.2 0.2
0 0.2 0 0
1 0.2 0 0.1

a. Compute the expected values E(X) and E(Y ), the
variances V (X) and V (Y ), and also the covariance
Cov(X,Y ) of X and Y . [10]

b. Determine whether X and Y are independent. [2]

c. Let W = 2X + Y . Compute E(W ) and V (W ). [4]

Solutions. a. We’re off to do arithmetic, arithmetic . . .

E(X) =
∑
x

xP (X = x) = 2(0.1 + 0.2 + 0.2) + 3(0.2 + 0 + 0) + 4(0.2 + 0 + 0.1)

= 2 · 0.5 + 3 · 0.2 + 4 · 0.3 = 1 + 0.6 + 1.2 = 2.8

E(Y ) =
∑
y

yP (Y = y) = (−1)(0.1 + 0.2 + 0.2) + 0(0.2 + 0 + 0) + 1(0.2 + 0 + 0.1)

= −1 · 0.5 + 0 · 0.2 + 1 · 0.3 = −0.5 + 0 + 0.3 = −0.2

E
(
X2
)

=
∑
x

x2P (X = x) = 22(0.1 + 0.2 + 0.2) + 32(0.2 + 0 + 0) + 42(0.2 + 0 + 0.1)

= 4 · 0.5 + 9 · 0.2 + 16 · 0.3 = 2 + 1.8 + 4.8 = 8.6

E
(
Y 2
)

=
∑
y

y2P (Y = y) = (−1)2(0.1 + 0.2 + 0.2) + 02(0.2 + 0 + 0) + 12(0.2 + 0 + 0.1)

= 1 · 0.5 + 0 · 0.2 + 1 · 0.3 = 0.5 + 0 + 0.3 = 0.8

E(XY ) =
∑
x,y

xyP (X = x & Y = y)

= (−1) · 2 · 0.1 + (−1) · 3 · 0.2 + (−1) · 4 · 0.2
+ 0 · 2 · 0.2 + 0 · 3 · 0 + 0 · 4 · 0
+ 1 · 2 · 0.2 + 1 · 3 · 0 + 1 · 4 · 0.1

= [(−0.2) + (−0.6) + (−0.8)] + [0 + 0 + 0] + [0.4 + 0 + 0.4]

= −1.6 + 0 + 0.8 = −0.8

V (X) = E
(
X2
)
− [E(X)]

2
= 8.6− (2.8)2 = 8.6− 7.84 = 0.76

V (Y ) = E
(
Y 2
)
− [E(Y )]

2
= 0.8− (−0.2)2 = 0.8− 0.04 = 0.76

Cov(X,Y ) = E(XY )− E(X) · E(Y ) = (−0.8)− 2.8 · (−0.2) = −0.8 + 0.56 = −0.24 �

b. Since Cov(X,Y ) = −0.24 6= 0, X and Y cannot be independent. �

c. E(W ) = E(2X + Y ) = 2E(X) + E(Y ) = 2 · 2.8 + (−0.2) = 5.6− 0.2 = 5.4 and

V (W ) = V (2X + Y ) = V (2X) + V (Y ) + 2 · Cov(2X,Y )

= 22 · V (X) + V (Y ) + 2 · 2 · Cov(X,Y )

= 4 · 0.76 + 0.76 + 4 · (−0.24) = 3.04 + 0.76− 0.96 = 2.84 �

[Total = 100]
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Part Dopey. Bonus!

• . Two fair standard dice are rolled simultaneously three times. What is the probability
that they will come up with the same face on at least one of the three rolls? [1]

•••
••• . Write a haiku touching on probability or mathematics in general. [1]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

[Part Bernoulli is on page 1.]

I hope that you enjoyed the course. Have a good summer!
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