Mathematics 1550H – Introduction to probability

TRENT UNIVERSITY, Winter 2018

Assignment # 10 Chebyshev's (In)equality Due on Wednesday, 4 April.

The version of Chebyshev's Inequality we saw in class states that a random variable X with expected value $\mu = E(X)$ and standard deviation $\sigma = \sqrt{V(X)}$ must satisfy

$$P\left(|X-\mu| \ge \varepsilon\right) \le \frac{\sigma^2}{\varepsilon^2}$$

for any real number $\varepsilon > 0$. A common variation of Chebyshev's Inequality states that a random variable X with expected value $\mu = E(X)$ and standard deviation $\sigma = \sqrt{V(X)}$ must satisfy

$$P\left(|X-\mu| \ge k\sigma\right) \le \frac{1}{k^2}$$

for any real number k > 0. The two forms are equivalent – let $\varepsilon = k\sigma$ to see why – but the latter is often more convenient in statistics, where measuring the distance between Xand μ in terms of σ is likely to be pretty natural. Note that the second form is of interest only if k > 1, since if $k \le 1$, then $\frac{1}{k^2} \ge 1$ and any probability must be ≤ 1 .

1. Given a fixed real number k > 1, any fixed real number μ , and any fixed real number $\sigma > 0$, find a probability density function g(x) such that a continuous random variable X with this density will have $E(X) = \mu$, standard deviation $\sqrt{V(X)} = \sigma$, and satisfy $P(|X - \mu| \ge k\sigma) = \frac{1}{k^2}$. [10]

NOTE: The point here is that Chebyshev's Inequality can't really be improved upon unless you have additional information about the distribution of the random variable X.