Trent University, Winter 2017

## MATH 1550H Test

Thursday, 2 March, 2017
Time: 50 minutes

## Name:

Student Number:

Question Mark


## Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Suppose the continuous random variable $X$ has $f(x)=\left\{\begin{array}{cl}1+x & -1 \leq x \leq 0 \\ 1-x & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$ as its probability density function. Compute $P(-0.5 \leq X \leq 0.5)$.
b. A hand of five cards is drawn simultaneously and randomly from a standard 52 -card deck. What is the probability that the hand includes exactly three $\mathrm{Vs}_{\mathrm{s}}$ ?
c. A fair coin is tossed four times. What is the probability that at least two heads will come up?

Solutions. a. (With calculus.) By definition:

$$
\begin{aligned}
P(-0.5 \leq X \leq 0.5) & =\int_{-0.5}^{0.5} f(x) d x=\int_{-0.5}^{0}(1+x) d x+\int_{0}^{0.5}(1-x) d x \\
& =\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-0.5} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{0.5} \\
& =\left[\left(0+\frac{0^{2}}{2}\right)-\left(-0.5+\frac{(-0.5)^{2}}{2}\right)\right]+\left[\left(0.5-\frac{0.5^{2}}{2}\right)-\left(0-\frac{0^{2}}{2}\right)\right] \\
& =[0-(-0.375)]+[0.375-0]=0.75=\frac{3}{4}
\end{aligned}
$$

a. (Without calculus.) By definition, $P(-0.5 \leq X \leq 0.5)$ is the area under the graph of the density function of $X$ between -0.5 and 0.5 . A sketch of this region

shows that it consists of a rectangle of width $1=0.5-(-0.5)$ and height $0.5=0.5-0$, and hence area $1 \cdot 0.5=0.5$, under a triangle with base $1=0.5-(-0.5)$ and height $0.5=1-0.5$, and hence area $\frac{1}{2} \cdot 1 \cdot 0.5=0.25$. The area of this region is thus $0.5+0.25=0.75$, and therefore $P(-0.5 \leq X \leq 0.5)=0.75$.
b. There are $\binom{13}{3}$ ways to choose three $V_{s}$ from the 13 that are in the hand, and $\binom{39}{2}$ ways to choose two cards from the remaining 39 cards in the deck. Since there are a total of $\binom{52}{5}$ ways to choose a hand of 5 cards from a standard 52 -card deck, and each hand is equally likely to be chosen, the probability that a randomly and simultaneously chosen hand includes exactly $3 \vartheta_{\mathrm{S}}$ is $\frac{\binom{13}{3}\binom{39}{2}}{\binom{52}{5}}$.
c. Note that $P(\geq 2 H)=1-P(<2 H)=1-[P(0 H)+P(1 H)]$. Since $P(0 H)=$ $P(T T T T)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{16}$ and $P(1 H)=P(H T T T)+P(T H T T)+P(T T H T)+$ $P($ TTTH $)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\cdots+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{16}+\cdots+\frac{1}{16}=\frac{4}{16}$, it follows that $P(\geq 2 H)=1-[P(0 H)+P(1 H)]=1-\left[\frac{1}{16}+\frac{4}{16}\right]=1-\frac{5}{16}=\frac{11}{16}$.
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Show that if $A$ and $B$ are events in some sample space, with $P(A)>0$ and $P(B)>0$, then $\frac{P(A \mid B)}{P(A)}=\frac{P(B \mid A)}{P(B)}$.
b. Determine whether $g(x)=\left\{\begin{array}{cc}x^{-2} & 1 \leq x \\ 0 & x<1\end{array}\right.$ is a valid continuous probability density.
c. A fair non-standard six-sided die thas one face numbered 1 , two faces numbered 2 , and three faces numbered 3 . What is the expected value of the number that comes up if the die is rolled once?

Solutions. a. By definition, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, so $P(A \mid B)=P(A \cap B) P(B)$, and thus $P(A \cap B)=\frac{P(A \mid B)}{P(B)}$. Similarly, $P(B \mid A)=\frac{P(B \cap A)}{P(A)}$, so $P(B \mid A)=P(B \cap A) P(A)$, and thus $P(B \cap A)=\frac{P(B \mid A)}{P(A)}$, and thus $P(B \cap A)=\frac{P(B \mid A)}{P(A)}$. Since $A \cap B=B \cap A$, it follows that $\frac{P(A \mid B)}{P(A)}=P(A \cap B)=P(B \cap A)=\frac{P(B \mid A)}{P(B)}$.
b. First, when $x<1, g(x)=0 \geq 0$, and when $x \geq 1, g(x)=x^{-2}=\frac{1}{x^{2}}>0 \geq 0$, so $g(x) \geq 0$ for all $x$. Second,

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(x) d x & =\int_{-\infty}^{1} 0 d x+\int_{1}^{\infty} x^{-2} d x=0+\left.\frac{x^{-2+1}}{-2+1}\right|_{1} ^{\infty}=\left.\frac{x^{-1}}{-1}\right|_{1} ^{\infty} \\
& =\left.\frac{-1}{x}\right|_{1} ^{\infty}=\frac{-1}{\infty}-\frac{-1}{1}=0-(-1)=1
\end{aligned}
$$

so $g(x)$ satisfies both conditions for being a valid probabiity density.
c. Since the die is fair, each face has a probability of $\frac{1}{6}$ of coming up when the die is rolled. If the random variable $X$ records the number on the face that comes up, it follows that $P(X=1)=\frac{1}{6}, P(X=2)=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}$, and $P(X=3)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}$. It follows that the expected value of the number that comes up is:
$E(X)=1 \cdot P(X=1)+2 \cdot P(X=2)+3 \cdot P(X=3)=1 \cdot \frac{1}{6}+2 \cdot \frac{2}{6}+3 \cdot \frac{3}{6}=\frac{14}{6}=\frac{7}{3}$
3. Do one (1) of $\mathbf{a}$ or $\mathbf{b}$. [10]
a. The continuous random variable $X$ has an exponential distribution with $\lambda=1$. Let $A$ be the event that $X \leq \ln (3)$ and $B$ be the event that $\ln (2) \leq X \leq \ln (4)$. Determine whether $A$ and $B$ are independent or not. [Recall that $e^{\ln (t)}=t$ for all $t>0$ and that $\ln (a)<\ln (b)$ whenever $0<a<b$.]
b. A fair coin is tossed once and then tossed again until it comes up with the same face that came up on on the first toss. Let the random variable $Y$ count the total number of tosses that occur in this experiment. Find the probability funtion of $Y$ and compute the expected value, $E(Y)$, of $Y$.

Solutions. a. Recall that the exponential distribution with $\lambda=1$ has density function $f(x)=\left\{\begin{array}{cc}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{array}=\left\{\begin{array}{cc}e^{-x} & x \geq 0 \\ 0 & x<0\end{array}\right.\right.$. Note that $A$ is basically the interval $(-\infty, \ln (3)]$ and $B$ the interval $[\ln (2), \ln (4)]$, so $A \cap B$ is the interval $[\ln (2), \ln (3)]$. Note also that the antiderivative of $e^{-x}$ is $-e^{-x}$. (This can be done using the substitution $u=-x$, so $d u=(-1) d x$ and thus $d x=(-1) d u$. It follows that $\int e^{-x} d u=\int e^{u}(-1) d u=$ $(-1) \int e^{u} d u=(-1) e^{u}=-e^{-x}$.) Then

$$
\begin{aligned}
P(A) & =\int_{-\infty}^{\ln (3)} f(x) d x=\int_{-\infty}^{0} 0 d x+\int_{0}^{\ln (3)} e^{-x} d x=0+-\left.e^{-x}\right|_{0} ^{\ln (3)} \\
& =\left[-e^{-\ln (3)}\right]-\left[-e^{-0}\right]=\left[-\frac{1}{e^{\ln (3)}}\right]-[-1]=-\frac{1}{3}+1=\frac{2}{3}, \\
P(B) & =\int_{\ln (2}^{\ln (4)} f(x) d x=\int_{\ln (2}^{\ln (4)} e^{-x} d x=-\left.e^{-x}\right|_{\ln (2} ^{\ln (4)} \\
& =\left[-e^{-\ln (4)}\right]-\left[-e^{-\ln (2)}\right]=\left[-\frac{1}{e^{\ln (4)}}\right]-\left[-\frac{1}{e^{\ln (2)}}\right]=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}, \text { and } \\
P(A \cap B) & =\int_{\ln (2}^{\ln (3)} f(x) d x=\int_{\ln (2}^{\ln (3)} e^{-x} d x=-\left.e^{-x}\right|_{\ln (2)} ^{\ln (3)} \\
& =\left[-e^{-\ln (3)}\right]-\left[-e^{-\ln (2)}\right]=\left[-\frac{1}{e^{\ln (3)}}\right]-\left[-\frac{1}{e^{\ln (2)}}\right]=-\frac{1}{3}+\frac{1}{2}=\frac{1}{6},
\end{aligned}
$$

so $P(A \cap B)=\frac{1}{1} 6=\frac{2}{12}=\frac{2}{3} \cdot \frac{1}{4}=P(A) \cdot P(B)$. Hence $A$ and $B$ are independent.
b. The first toss determines which face we will subsequently be stopping on. Whether it comes up $H$ or $T$, the number of the rest of the tosses follows a geometric distribution with $p=q=\frac{1}{2}$ because the coin is fair. It follows that $Y-1$ has a geometric distribution with $p=q=\frac{1}{2}$, which has the probability function $m(k)=q^{k-1} p=\left(\frac{1}{2}\right)^{k-1} \frac{1}{2}=\left(\frac{1}{2}\right)^{k}$ for $k \geq 1$ and expected value $\frac{1}{p}=\frac{1}{1 / 2}=2$. It follows that $Y=(Y-1)+1$ has the probability function $p(n)=m(n-1)=\left(\frac{1}{2}\right)^{n-1}$ (for $n \geq 2 ; m(n)=0$ otherwise) and has expected value $E(Y)=E(Y-1+1)=E(Y-1)+1=2+1=3$.

