Trent University, Winter 2017

MATH 1550H Test

Thursday, 2 March, 2017
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Suppose the continuous random variable X has $f(x)=\left\{\begin{array}{cl}1+x & -1 \leq x \leq 0 \\ 1-x & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$ as its probability density function. Compute $P(-0.5 \leq X \leq 0.5)$.
b. A hand of five cards is drawn simultaneously and randomly from a standard 52 -card deck. What is the probability that the hand includes exactly three Vs_{s} ?
c. A fair coin is tossed four times. What is the probability that at least two heads will come up?
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Show that if A and B are events in some sample space, with $P(A)>0$ and $P(B)>0$, then $\frac{P(A \mid B)}{P(A)}=\frac{P(B \mid A)}{P(B)}$.
b. Determine whether $g(x)=\left\{\begin{array}{cc}x^{-2} & 1 \leq x \\ 0 & x<1\end{array}\right.$ is a valid continuous probability density.
c. A fair non-standard six-sided die thas one face numbered 1 , two faces numbered 2 , and three faces numbered 3 . What is the expected value of the number that comes up if the die is rolled once?
3. Do one (1) of \mathbf{a} or \mathbf{b}. [10]
a. The continuous random variable X has an exponential distribution with $\lambda=1$. Let A be the event that $X \leq \ln (3)$ and B be the event that $\ln (2) \leq X \leq \ln (4)$. Determine whether A and B are independent or not. [Recall that $e^{\ln (t)}=t$ for all $t>0$ and that $\ln (a)<\ln (b)$ whenever $0<a<b$.]
b. A fair coin is tossed once and then tossed again until it comes up with the same face that came up on on the first toss. Let the random variable Y count the total number of tosses that occur in this experiment. Find the probability funtion of Y and compute the expected value, $E(Y)$, of Y.

$$
[\text { Total }=30]
$$

