Mathematics 1550 H - Introduction to probability

Trent University, Winter 2017
Solutions to the Final Examination
Wednesday, 19 April, 2017
Time-space: 19:00-22:00 in the Gym
Inflicted by Стефан Біланюк.
Instructions: Do both of parts \mathbf{X} and \mathbf{Y}, and, if you wish, part Z. Show all your work and simplify answers as much as practicable. If in doubt about something, ask!
Aids: Calculator; one $8.5^{\prime \prime} \times 11^{\prime \prime}$ or A4 aid sheet; standard normal table; one brain maximum.
Part X. Do all of 1-5.
[Subtotal $=68 / 100]$

1. A fair three-sided die that has faces numbered 1,2 , and 3 , respectively, is tossed twice.
a. Draw the complete tree diagram for this experiment. [3]
b. What are the sample space and probability function for this experiment? [5]
c. Let the random variable X give the sum of the numbers that come up in the two tosses. Compute the expected value $E(X)$ and variance $V(X)$ of X. [7]

Solutions. a. Here it is:

b. $\Omega=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$. Since the die is fair, each outcome is equally likely, and so we have a uniform distribution with $m(\omega)=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9}$ for each outcome $\omega \in \Omega$.
c. The possible values of X are $2=1+1,3=1+2=2+1,4=1+3=2+2=3+1$, $5=2+3=3+2$, and $6=3+3$, and their respective probabilities are given by:

$$
\begin{aligned}
& P(X=2)=m(1,1)=\frac{1}{9} \\
& P(X=3)=m(1,2)+m(2,1)=\frac{1}{9}+\frac{1}{9}=\frac{2}{9} \\
& P(X=4)=m(1,3)+m(2,2)+m(3,1)=\frac{1}{9}+\frac{1}{9}+\frac{1}{9}=\frac{3}{9}=\frac{1}{3} \\
& P(X=5)=m(2,3)+m(3,2)=\frac{1}{9}+\frac{1}{9}=\frac{2}{9} \\
& P(X=6)=m(3,3)=\frac{1}{9}
\end{aligned}
$$

It follows that
$E(X)=\sum_{k=2}^{6} k \cdot P(X=k)=2 \cdot \frac{1}{9}+3 \cdot \frac{2}{9}+4 \cdot \frac{3}{9}+5 \cdot \frac{2}{9}+6 \cdot \frac{1}{9}=\frac{2+6+12+10+6}{9}=\frac{36}{9}=4$
which you could also get by observing that the probability distribution of X is symmetric about 4. Since

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{k=2}^{6} k^{2} \cdot P(X=k)=2^{2} \cdot \frac{1}{9}+3^{2} \cdot \frac{2}{9}+4^{2} \cdot \frac{3}{9}+5^{2} \cdot \frac{2}{9}+6^{2} \cdot \frac{1}{9} \\
& =\frac{4+18+48+50+36}{9}=\frac{156}{9}=\frac{52}{3}=17 \frac{1}{3} \approx 17.3
\end{aligned}
$$

we get that $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{52}{3}-4^{2}=\frac{52}{3}-16=\frac{4}{3} \approx 1.3$.
2. Let W be a continuous random variable with the following probability density function:

$$
g(w)=\left\{\begin{array}{cl}
\frac{3}{4}\left(1-w^{2}\right) & -1 \leq w \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

a. Verify that $g(w)$ is indeed a probability density function. [8]
b. Compute the probability that $W \leq \frac{1}{2}$, given that $W \geq 0$. [7]

Solutions. a. First, observe that when $-1 \leq w \leq 1$, we get $w^{2} \leq 1$, and so $g(w)=$ $\frac{3}{4}\left(1-w^{2}\right) \geq 0$. Since $g(w)=0$ otherwise, it follows that $g(w) \geq 0$ for all w.

Second, using the Power Rule for integration at the key step,

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(w) d w & =\int_{-\infty}^{-1} 0 d w+\int_{-1}^{1} \frac{3}{4}\left(1-w^{2}\right) d w+\int_{1}^{\infty} 0 d w \\
& =0+\frac{3}{4} \int_{-1}^{1}\left(1-w^{2}\right) d w+0=\left.\frac{3}{4}\left(w-\frac{w^{3}}{3}\right)\right|_{-1} ^{1} \\
& =\frac{3}{4}\left(1-\frac{1^{3}}{3}\right)-\frac{3}{4}\left((-1)-\frac{(-1)^{3}}{3}\right) \\
& =\frac{3}{4}\left(1-\frac{1}{3}\right)-\frac{3}{4}\left((-1)-\frac{-1}{3}\right)=\frac{3}{4} \cdot \frac{2}{3}-\frac{3}{4} \cdot \frac{-2}{3} \\
& =\frac{1}{2}-\frac{-1}{2}=\frac{1}{2}+\frac{1}{2}=1,
\end{aligned}
$$

so it follows that $g(w)$ is indeed a valid probability density function.
b. Note that this is a conditional probability problem: the question asks one to work out $P\left(\left.W \leq \frac{1}{2} \right\rvert\, W \geq 0\right)$. By definition, $P\left(\left.W \leq \frac{1}{2} \right\rvert\, W \geq 0\right)=\frac{P\left(W \leq \frac{1}{2} \text { and } W \geq 0\right)}{P(W \geq 0)}=\frac{P\left(0 \leq W \leq \frac{1}{2}\right)}{P(W \geq 0)}$, so we need to work out $P\left(0 \leq W \leq \frac{1}{2}\right)$ and $P(W \geq 0)$:

$$
\begin{aligned}
P(W \geq 0) & =\int_{0}^{\infty} g(w) d w=\int_{0}^{1} \frac{3}{4}\left(1-w^{2}\right) d w+\int_{1}^{\infty} 0 d w=\frac{3}{4} \int_{0}^{1} \frac{3}{4}\left(1-w^{2}\right) d w+0 \\
& =\left.\frac{3}{4}\left(w-\frac{w^{3}}{3}\right)\right|_{0} ^{1}=\frac{3}{4}\left(1-\frac{1^{3}}{3}\right)-\frac{3}{4}\left(0-\frac{0^{3}}{3}\right)=\frac{3}{4} \cdot \frac{2}{3}-\frac{3}{4} \cdot 0=\frac{1}{2}-0=\frac{1}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(0 \leq W \leq \frac{1}{2}\right) & =\int_{0}^{1 / 2} g(w) d w=\int_{0}^{1 / 2} \frac{3}{4}\left(1-w^{2}\right) d w=\left.\frac{3}{4}\left(w-\frac{w^{3}}{3}\right)\right|_{0} ^{1 / 2} \\
& =\frac{3}{4}\left(\frac{1}{2}-\frac{(1 / 2)^{3}}{3}\right)-\frac{3}{4}\left(0-\frac{0^{3}}{3}\right)=\frac{3}{4} \cdot \frac{11}{24}-\frac{3}{4} \cdot 0=\frac{11}{32}
\end{aligned}
$$

Thus $P\left(\left.W \leq \frac{1}{2} \right\rvert\, W \geq 0\right)=\frac{P\left(0 \leq W \leq \frac{1}{2}\right)}{P(W \geq 0)}=\frac{11 / 32}{1 / 2}=\frac{22}{32}=\frac{11}{16}$.
3. A hand of five cards is drawn simultaneously from a standard 52 -card deck. Let A be the event that the hand is the Dead Man's Hand supposedly held by "Wild Bill" Hickok when he was murdered in 1876 - $A \boldsymbol{\uparrow}, A \boldsymbol{\phi}, 8 \boldsymbol{\uparrow}, 8 \mathbf{\infty}$, and $Q \boldsymbol{q}$ - and let B be the event that the hand includes two pairs and one more card of a different kind. Compute the conditional probabilities $P(A \mid B)$ and $P(B \mid A)$. [10]
Solution. There are $\binom{52}{5}$ possible hands of five cards that could be drawn from the deck. Just one of these hands is in the event A, so $P(A)=\frac{1}{\binom{52}{5}}$. To find the number of hands in the event B, note that there are $\binom{13}{2}$ ways to choose the kinds for the two pairs, $\binom{4}{2}$ ways for each of these kinds to choose a pair from the four cards of that kind, and $\binom{44}{1}$ ways to pick one more card of some other kind. Thus $P(B)=\frac{\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{44}{1}}{\binom{52}{5}}$. Since the only hand in A is also in $B, A \cap B=A$ and $P(A \cap B)=P(A)$. Hence

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{1 /\binom{52}{5}}{\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{44}{1} /\binom{52}{5}}=\frac{1}{\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{44}{1}}
$$

and

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A)}{P(A)}=1 .
$$

4. A fair coin is tossed until it comes up heads for the second time. Let Y be the number of tosses required, let A be the event that $Y \leq 5$, and let B be the event that $Y \geq 4$.
a. What are the expected value, $E(Y)$, and variance, $V(Y)$, of Y ? [6]
b. Compute $P(A \mid B)$. [7]

Solutions. a. Y has a negative binomial distribution with $p=q=\frac{1}{2}$ and $k=2$, so it has probability function is $m(y)=\binom{y-1}{2-1}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{y-2}=\binom{y-1}{1}\left(\frac{1}{2}\right)^{y}$ (for $y \geq 2 ; m(y)=0$ otherwise), and has expected value $E(Y)=\frac{2}{\frac{1}{2}}=4$ and variance $V(Y)=\frac{2 \cdot \frac{1}{2}}{\left(\frac{1}{2}\right)^{2}}=4$.
b. Note that

$$
\begin{aligned}
P(B) & =P(Y \geq 4)=1-P(Y<4)=1-[P(Y=2)+P(Y=3)]=1-[m(2)+m(3)] \\
& =1-\left[\binom{2-1}{1}\left(\frac{1}{2}\right)^{2}+\binom{3-1}{1}\left(\frac{1}{2}\right)^{3}\right]=1-\left[\frac{1}{4}+\frac{2}{8}\right]=1-\frac{1}{2}=\frac{1}{2},
\end{aligned}
$$

and, since $A \cap B$ is the event that $4 \leq Y \leq 5$, i.e. that $Y=4$ or $Y=3$,

$$
\begin{aligned}
P(A \cap B) & =P(Y=4)+P(Y=5)=m(4)+m(5) \\
& =\binom{4-1}{1}\left(\frac{1}{2}\right)^{4}+\binom{5-1}{1}\left(\frac{1}{2}\right)^{5}=\frac{3}{16}+\frac{4}{32}=\frac{5}{16} .
\end{aligned}
$$

It follows that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{5}{16}}{\frac{1}{2}}=\frac{5}{8}$.
5. Suppose X is a continuous random variable that has a normal distribution with expected value $\mu=3$ and variance $\sigma^{2}=4$.
a. Compute $P(1 \leq X \leq 5)$ with the help of a standard normal table. [6]
b. Use Chebyshev's Inequality to estimate $P(X \leq 5)$. [9]

Solutions. a. Since X has a normal distribution with expected value $\mu=3$ and variance $\sigma^{2}=4$ (so $\sigma=\sqrt{4}=2$), $Z=\frac{X-\mu}{\sigma}=\frac{X-3}{2}$ has a standard normal distribution. Since

$$
\begin{aligned}
1 \leq X \leq 5 & \Leftrightarrow-2=1-3 \leq X-3 \leq 5-3=2 \\
& \Leftrightarrow-\frac{2}{2} \leq \frac{X-3}{2} \leq \frac{2}{2} \Leftrightarrow-1 \leq Z \leq 1
\end{aligned}
$$

we get, using the cumulative standard normal table supplied with the exam:

$$
\begin{aligned}
P(1 \leq X \leq 5) & =P(-1 \leq Z \leq 1)=P(Z \leq 1)-P(Z<-1) \\
& \approx 0.8413-0.1587=0.6826 \quad \square
\end{aligned}
$$

b. The problem here is to find something suitably related to $P(X \leq 5)$ to which Chebyshev's Inequality can be applied. Observe first that $P(X \leq 5)=1-P(X \geq 5)=1-P(X-$ $3 \geq 2$). Now, since the normal distribution with $\mu=3$ and $\sigma=2$ is symmetric about $\mu=3$, $P(X-3 \geq 2)=P(X-3 \leq-2)$, and since $P(|X-3| \geq 2)=P(X-3 \geq 2)+P(X-3 \leq-2)$, we have that $P(X-3 \geq 2)=\frac{1}{2} P(|X-3| \geq 2)$. By Chebyshev's Inequality, we have that $P(|X-3| \geq 2) \leq \frac{2^{2}}{\sigma^{2}}=\frac{2^{2}}{2^{2}}=1$ [We already knew that just because it was a probability, didn't we? So Chebyshev's Inequality wasn't really necessary here ...], so it follows that $P(X-3 \geq 2)=\frac{1}{2} P(|X-3| \geq 2) \leq \frac{1}{2} \cdot 1=\frac{1}{2}$. Thus

$$
P(X \leq 5)=1-P(X \geq 5)=1-P(X-3 \geq 2) \geq 1-\frac{1}{2}=\frac{1}{2}
$$

Note that $0.6826 \geq 0.5=\frac{1}{2}$ indeed.

Part Y. Do any two (2) of 6-9.
[Subtotal $=32 / 100]$
6. Let $g(x)=\left\{\begin{array}{cc}\frac{1}{2} & 0 \leq x \leq 1 \\ \frac{1}{2} e^{-x} & x \geq 1 \\ 0 & x<0\end{array}\right.$ be the probability density function of the continuous random variable X.
a. Verify that $g(x)$ is indeed a probability density function. [6]
b. Compute the expected value $E(X)$ and variance of $V(X)$ of X. [10]

Solutions. a. First, $g(x) \geq 0$ for all x since $0 \geq 0$ for $x<0, \frac{1}{2} \geq 0$ when $0 \leq x \leq 1$, and $\frac{1}{2} e^{-x} \geq 0$ (because $e^{t}>0$ for all t) for $x \geq 1$. Second,

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(x) d x & =\int_{-\infty}^{0} 0 d x+\int_{0}^{1} \frac{1}{2} d x+\int_{1}^{\infty} \frac{1}{2} e^{-x} d x=0+\left.\frac{1}{2} x\right|_{0} ^{1}+\left.\frac{1}{2}\left(-e^{-x}\right)\right|_{1} ^{\infty} \\
& =\left[\frac{1}{2} \cdot 1-\frac{1}{2} \cdot 0\right]+\left[\frac{1}{2}\left(-e^{-\infty}\right)-\frac{1}{2}\left(-e^{-1}\right)\right] \\
& =\left[\frac{1}{2}-0\right]+\left[\frac{1}{2} \cdot(-0)-\frac{1}{2}\left(-\frac{1}{e}\right)\right] \\
& =\frac{1}{2}+\left[0+\frac{1}{2 e}\right]=\frac{1}{2}+\frac{1}{2 e} \approx 0.6839 \neq 1
\end{aligned}
$$

so $g(x)$ is not a valid probability density.
Note: The question originally had $g(x)=\left\{\begin{array}{cc}\frac{1}{2} & -1 \leq x \leq 0 \\ \frac{1}{2} e^{-x} & x \geq 0 \\ 0 & x<-1\end{array}\right.$ instead, which would have made it a valid probability density. Given the phrasing of part a and the existence of part \mathbf{b}, the change turned out to be pretty mean, confusing many of the students who tried to do this question. Sorry!
b. (Solution i.) Since $g(x)$ is not a valid probability density, $E(X)$ and $V(X)$ are meaningless, so there is nothing further to do ...
b. (Solution ii.) Assuming that $g(x)$ was actually a valid probability density [whether because the solution to a was actually messed up, or was just assumed to be messed up], we compute $E(X)$ and $V(X)$ using their definitions and some calculus. First,

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x g(x) d x=\int_{-\infty}^{0} x \cdot 0 d x+\int_{0}^{1} x \cdot \frac{1}{2} d x+\int_{1}^{\infty} x \cdot \frac{1}{2} e^{-x} d x \\
& =0+\left.\frac{1}{2} \cdot \frac{x^{2}}{2}\right|_{0} ^{1}+\left.\frac{1}{2}\left[-x e^{-x}+e^{-x}\right]\right|_{1} ^{\infty} \quad \begin{array}{l}
\text { Using integration by parts } \\
\text { with } u=x \text { and } v^{\prime}=e^{-x} \text { to } \\
\text { do the last integral. }
\end{array} \\
& =\frac{1^{2}}{4}-\frac{0^{2}}{4}+\frac{1}{2}\left[-\infty \cdot e^{-\infty}+e^{-\infty}\right]-\frac{1}{2}\left[-1 \cdot e^{-1}+e^{-1}\right] \\
& =\frac{1}{4}-0+\frac{1}{2}[0+0]-\frac{1}{2}\left[-e^{-1}+e^{-1}\right]=\frac{1}{4}-0+\frac{1}{2} \cdot 0-\frac{1}{2} \cdot 0=\frac{1}{4} .
\end{aligned}
$$

Second, with the help of some heavy recycling of parts of the calculation for $E(X)$,

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} g(x) d x=\int_{-\infty}^{0} x^{2} \cdot 0 d x+\int_{0}^{1} x^{2} \cdot \frac{1}{2} d x+\int_{1}^{\infty} x^{2} \cdot \frac{1}{2} e^{-x} d x \\
& =0+\left.\frac{1}{2} \cdot \frac{x^{3}}{3}\right|_{0} ^{1}+\frac{1}{2}\left[-\left.x^{2} e^{-x}\right|_{1} ^{\infty}-\int_{1}^{\infty}-2 x e^{-x} d x\right] \quad \begin{array}{l}
\text { Using parts with } \\
u=x^{2} \text { and } v^{\prime}=e^{-x}
\end{array} \\
& =\frac{1^{3}}{6}-\frac{0^{3}}{6}+\frac{1}{2}\left[\left(-\infty^{2} e^{-\infty}\right)-\left(-1^{2} e^{-1}\right)+\left.2\left[-x e^{-x}+e^{-x}\right]\right|_{1} ^{\infty}\right] \\
& =\frac{1}{6}+\frac{1}{2}\left[0+e^{-1}+2 \cdot 0\right]=\frac{1}{6}+\frac{1}{2 e} .
\end{aligned}
$$

It follows that $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{1}{6}+\frac{1}{2 e}-\left[\frac{1}{4}\right]^{2}=\frac{1}{6}-\frac{1}{2 e}-\frac{1}{16}=\frac{5}{48}-\frac{1}{2 e}$.
7. A jar contains two identical red balls and three identical blue balls. Balls are drawn randomly from the jar, one at a time and without replacement, until all five balls have been removed from the jar.
a. Find the sample space and probability function for this experiment. [6]
b. Let A be the event that the third ball drawn is blue, and let B be the event that the first ball drawn is red. Determine whether A and B are independent. [5]
c. The random variable R returns in which draw the second red ball came up. Compute the expected value $E(R)$ and variance $V(R)$ of R [5]
Solutions. a. $\Omega=\{B B B R R, B B R B R, B B R R B, B R B B R, B R B R B, B R R B B$, $R B B B R, R B B R B, R B R B B, R R B B B\}$. Each of these ten sequences of draws is equally likely, so the probability function is uniform, with $m(\omega)=\frac{1}{10}$ for each $\omega \in \Omega$.
b. Since $A=\{B B B R R, B R B B R, B R B R B, R B B B R, R B B R B, R R B B B\}$ and $B=$ $\{R B B B R, R B B R B, R B R B B, R R B B B\}, A \cap B=\{R B B B R, R B B R B, R R B B B\}$. Each outcome is equally likely and has a probability of $\frac{1}{10}$, so $P(A)=\frac{6}{10}, P(B)=\frac{4}{10}$, and $P A \cap B)=\frac{3}{10}$. As $P(A \cap B)=\frac{3}{10}=0.3 \neq 0.24=\frac{24}{100}=\frac{6}{10} \cdot \frac{4}{10}=P(A) P(B)$, the events A and B are not independent.
c. The possible values of R are $2,3,4$, and 5 - the second red ball can't very well turn up on the first draw. By counting how many outcomes in Ω give each value, we see that $P(R=2)=\frac{1}{10}, P(R=3)=\frac{2}{10}, P(R=4)=\frac{3}{10}$, and $P(R=5)=\frac{4}{10}$. We can now apply the definitions of $E(R)$ and $V(R)$:

$$
\begin{aligned}
E(R) & =\sum_{k=2}^{5} k P(R=k)=2 \cdot \frac{1}{10}+3 \cdot \frac{2}{10}+4 \cdot \frac{3}{10}+5 \cdot \frac{4}{10}=\frac{2+6+12+20}{10}=\frac{40}{10}=4 \\
E\left(R^{2}\right) & =\sum_{k=2}^{5} k^{2} P(R=k)=2^{2} \cdot \frac{1}{10}+3^{2} \cdot \frac{2}{10}+4^{2} \cdot \frac{3}{10}+5^{2} \cdot \frac{4}{10}=\frac{4+18+48+100}{10} \\
& =\frac{170}{10}=17 \\
V(R) & =E\left(R^{2}\right)-[E(R)]^{2}=17-4^{2}=17-16=1
\end{aligned}
$$

8. Suppose X_{1} and X_{2} are independent continuous random variables that each have a standard normal distribution. Let $X=X_{1}+X_{2}$.
a. Compute the expected value, $E(X)$, and variance, $V(X)$, of X. [6]
b. What is the distribution of X ? [10 $=4$ if you guess right +6 if you show it]

Solutions. a. A standard normal distribution has expected value $\mu=0$ and variance $\sigma^{2}=1^{2}=1$, so $E(X)=E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=0+0=0$ (by the linearity of E) and $V(X)=V\left(X_{1}+X_{2}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)=1+1=2$ (since X_{1} and X_{2} are independent).
b. X has a normal distribution with expected value $\mu=0$ and variance $\sigma^{2}=2$. (Hence the standard deviation of X is $\sigma=\sqrt{2}$.) This can be verified by working out the density function of X using the appropriate convolution integral. Recall that the density function for the standard normal distribution, and hence of X_{1} and X_{2}, is $\varphi(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$. Plugging this into the convolution formula gives:

$$
\begin{aligned}
& f(x)=(\varphi * \varphi)(x)=\int_{-\infty}^{\infty} \varphi(x-t) \varphi(t) d t=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(x-t)^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t \\
&=\left(\frac{1}{\sqrt{2 \pi}}\right)^{2} \int_{-\infty}^{\infty} e^{-\left[(x-t)^{2}+t^{2}\right] / 2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2\left[(t-x / 2)^{2}+x^{2} / 4\right] / 2} d t \\
&\left(\text { Since }(x-t)^{2}+t^{2}=2 t^{2}-2 x t+x^{2}=2\left[t^{2}-x t+\frac{x^{2}}{4}-\frac{x^{2}}{4}+\frac{x^{2}}{2}\right]\right. \\
&=2\left[\left(\left(t-\frac{x}{2}\right)^{2}+\frac{x^{2}}{4}\right] .\right) \\
&= \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-(t-x / 2)^{2}} e^{-x^{2} / 4} d t=\frac{1}{2 \pi} e^{-x^{2} / 4} \int_{-\infty}^{\infty} e^{-(t-x / 2)^{2}} d t
\end{aligned}
$$

Now substitute $w=\sqrt{2}\left(t-\frac{x}{2}\right)$, so $d w=\sqrt{2} d t$ and $d t=\frac{1}{\sqrt{2}} d w$.

$$
=\frac{1}{2 \pi} e^{-x^{2} / 4} \int_{-\infty}^{\infty} e^{-w^{2} / 2} \cdot \frac{1}{\sqrt{2}} d w=\frac{1}{2 \sqrt{\pi}} e^{-x^{2} / 4} \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-w^{2} / 2} d w
$$

$$
=\frac{1}{\sqrt{2} \cdot \sqrt{2 \pi}} e^{-x^{2} / 2 \cdot(\sqrt{2})^{2}} \quad\left(\text { Since } \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-w^{2} / 2} d w=\int_{-\infty}^{\infty} \varphi(w) d w=1 .\right)
$$

That is, the density of X is $f(x)=\frac{1}{\sqrt{2} \cdot \sqrt{2 \pi}} e^{-x^{2} / 2 \cdot(\sqrt{2})^{2}}=\frac{1}{\sqrt{2} \cdot \sqrt{2 \pi}} e^{-(x-0)^{2} / 2 \cdot(\sqrt{2})^{2}}$, which is the density of a normal distribution with expected value $\mu=0$ and variance $\sigma^{2}=(\sqrt{2})^{2}=$ 2 , as required.
9. Suppose the discrete random variables X and Y are jointly distributed according to the following table:

$X \backslash^{Y}$	1	2	3
-1	0.1	0.1	0.2
1	0.1	0.2	0
3	0.2	0	0

a. Compute the expected values $E(X)$ and $E(Y)$, variances $V(X)$ and $V(Y)$, and covariance $\operatorname{Cov}(X, Y)$ of X and Y. [12]
b. Let $W=2 Y-3 X$. Compute $E(W)$ and $V(W)$. [4]

Note. The entries in the table only add up to 0.9 instead of 1 , thanks to a typo. The entry for $X=3$ and $Y=3$ was supposed to have been 0.1 instead of 0 . Sigh - this error escaped a weekend of proof-reading.
Solutions. a. Happily ignoring the noted problem, we compute away:

$$
\begin{aligned}
E(X)= & (-1)(0.1+0.1+0.2)+1(0.1+0.2+0)+3(0.2+0+0) \\
= & (-1) \cdot 0.4+1 \cdot 0.3+3 \cdot 0.2=-0.4+0.3+0.6=0.5 \\
E(Y)= & 1(0.1+0.1+0.2)+2(0.1+0.2+0)+3(0.2+0+0) \\
= & 1 \cdot 0.4+2 \cdot 0.3+3 \cdot 0.2=0.4+0.6+0.6=1.6 \\
E\left(X^{2}\right)= & (-1)^{2}(0.1+0.1+0.2)+1^{2}(0.1+0.2+0)+3^{2}(0.2+0+0) \\
= & 1 \cdot 0.4+1 \cdot 0.3+9 \cdot 0.2=0.4+0.3+1.8=2.5 \\
E\left(Y^{2}\right)= & 1^{2}(0.1+0.1+0.2)+2^{2}(0.1+0.2+0)+3^{2}(0.2+0+0) \\
= & 1 \cdot 0.4+4 \cdot 0.3+9 \cdot 0.2=0.4+1.2+1.8=3.4 \\
V(X)= & E\left(X^{2}\right)-[E(X)]^{2}=2.5-0.5^{2}=2.5-0.25=2.25 \\
V(Y)= & E\left(Y^{2}\right)-[E(Y)]^{2}=3.4-1.6^{2}=3.4-2.56=0.84 \\
E(X Y)= & (-1) \cdot 1 \cdot 0.1+(-1) \cdot 2 \cdot 0.1+(-1) \cdot 3 \cdot 0.2 \\
& +1 \cdot 1 \cdot 0.1+1 \cdot 2 \cdot 0.2+1 \cdot 3 \cdot 0 \\
& +3 \cdot 1 \cdot 0.2+3 \cdot 2 \cdot 0+3 \cdot 3 \cdot 0 \\
= & -0.1-0.2-0.6+0.1+0.4+0+0.6+0+0=0.2 \\
\operatorname{Cov}(X, Y)= & E(X Y)-E(X) \cdot E(Y)=0.2-0.5 \cdot 1.6=0.2-0.8=-0.6
\end{aligned}
$$

Whew!
b. Here hoes:

$$
\begin{aligned}
E(W) & =E(2 Y-3 X)=E(2 Y)-E(3 X)=2 E(Y)-3 E(X) \\
& =2 \cdot 1.6-3 \cdot 0.5=3.2-1.5=1.7 \\
V(W) & =V(2 Y-3 X)=V(2 Y+(-3) X)=V(2 Y)+V(-3 X)+2 \operatorname{Cov}(2 Y,-3 X) \\
& =2^{2} V(Y)+(-3)^{2} V(X)+2 \cdot 2 \cdot(-3) \cdot \operatorname{Cov}(Y, X) \\
& =4 V(Y)+9 V(X)-1.2 \cdot \operatorname{Cov}(X, Y)=4 \cdot 0.84+9 \cdot 2.25-1.2 \cdot(-0.6) \\
& =3.36+20.25+7.2=30.81
\end{aligned}
$$

Part Z. Bonus!

- . Give as clever - i.e. with a simple set-up and an easy, but not obvious, solution a probability problem as you can. [1]
\bullet. Write an original little poem about probability or mathematics in general. [1]
[Part \mathbf{X} is on page 1.]

I hope that you enjoyed the course. Have a good the summer!

