Mathematics 1550 H - Introduction to probability
 Trent University, Winter 2017

Assignment \#3

A Random Walk
Due on Thursday, 16 March, 2017.
A fair four-sided die has its sides labelled U, D, L, and R, respectively. A token is placed at $(0,0)$ on the Cartesian plane and the die is then rolled repeatedly. After each roll, the token is moved as follows:

Roll	Move
U	$(a, b) \rightarrow(a, b+1)$
D	$(a, b) \rightarrow(a, b-1)$
L	$(a, b) \rightarrow(a+1, b)$
R	$(a, b) \rightarrow(a-1, b)$

Let the random variable Y_{n} be the taxicab distance* the token is from $(0,0)$ after $n \geq 0$ rolls and the consequent moves. It should be pretty obvious that $Y_{0}=0$: the token starts at $(0,0)$ and $n=0$ moves have taken place. After that it gets more interesting ...

1. What is $E\left(Y_{n}\right)$? Explain why as best you can. [5]
2. What is $V\left(Y_{n}\right)$? Explain why as best you can. [5]
[^0]
[^0]: * The taxicab distance from $(0,0)$ to (a, b) is $|a|+|b|$.

