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Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.
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1. Do any three (3) of a–d. [12 = 3 × 4 each]

a. The continuous random variable W has the density function f(t) =

{ 1
4 −2 ≤ t ≤ 2

0 otherwise
.

Compute P (W > 1).

b. How many distinct ways are there to arrange ten books, three of which are identical
to one another, on four shelves? (Each shelf could accommodate all ten books.)

c. A five-card hand is drawn at random from a standard 52-card deck. What is the
probability that each of the five cards is of a different kind?

d. A fair five-sided die with faces numbered 1 to 5 is rolled twice. Let X be the sum of
the faces that come up on the two rolls. Find the probability function of X.

Solutions. a. Here goes:

P (W > 1) =

∫ ∞
1

f(t) dt =

∫ 2

1

1

4
dt +

∫ ∞
2

0 dt =
1

4
t

∣∣∣∣2
1

+ 0

=
1

4
· 2− 1

4
· 1 =

2

4
− 1

4
=

1

4
= 0.25 �

b. We will count the arrangements of ten books and three indistinguishable dividers: for
each arrangement, the books before the first divider will be put on the first shelf in the
order they occur in the arrangement, the books between the first and second dividers will
be put on the second shelf in the order they occur in the arrangement, and so on. If the
books and dividers were all distinct, there would be (10 + 3)! = 13! ways to arrange them.
Since the three dividers are indistiguishable, we have to divide this number by the number
of ways one can arrange three distinct dividers, namely 3!; since three of the books are
identical, we also have to divide by the number of ways one can arrange three distinct

objects, namely 3!. It follows that there are
13!

3!3!
= 172972800 distinct ways to arrange ten

books, three of which are identical to one another, on four shelves. �

c. There are
(
13
5

)
ways to pick the five kinds that appear in the hand and, since there are(

4
1

)
= 4 ways to pick a card of each kind, there are

(
13
5

)
45 hands of five cards in which each

card is of a different kind. Since there are
(
52
5

)
equally likely hands, the probability that a

randomly drawn hand of five cards has them all of different kinds is
(13

5 )45

(52
5 )
≈ 0.5071. �

d. Note that since the die is fair, any particular pair of rolls (i, j) is as likely as any other;
since the die is five sided, the probability of any particular pair is 1

5 ·
1
5 = 1

25 . Note that
the least the sum could be is 1 + 1 = 2 and the most it could be is 5 + 5 = 10. We’ll use



this information and brute force to compute the probability function of X:

m(2) = P (X = 2) = P (1, 1) =
1

25

m(3) = P (X = 3) = P (1, 2) + P (2, 1) =
2

25

m(4) = P (X = 4) = P (1, 3) + P (2, 2) + P (3, 1) =
3

25

m(5) = P (X = 5) = P (1, 4) + P (2, 3) + P (3, 2) + P (4, 1) =
4

25

m(6) = P (X = 6) = P (1, 5) + P (2, 4) + P (3, 3) + P (4, 2) + P (5, 1) =
5

25

m(7) = P (X = 7) = P (2, 5) + P (3, 4) + P (4, 3) + P (5, 2) =
4

25

m(8) = P (X = 8) = P (3, 5) + P (4, 4) + P (5, 3) =
3

25

m(9) = P (X = 9) = P (4, 5) + P (5, 4) =
2

25

m(10) = P (X = 10) = P (5, 5) =
1

25

. . . and m(k) = 0 otherwise. �
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2. Do any two (2) of a–c. [10 = 2 × 5 each]

a. If A and B are events in a sample space Ω, does P (A|B) + P (A|B̄) = P (A)? Verify
that it must be so or find an example demonstrating otherwise.

b. A fair coin is tossed five times. Let A be the event that exactly two heads occurred
in the five tosses and B be the event that the first two tosses included one head and
one tail. Determine whether A and B are independent or not.

c. The continuous random variable X has density function g(t) =

{
1− 1

2 t 0 ≤ t ≤ 2

0 otherwise
.

Find the median of X; that is, the number m such that P (X ≤ m) = 1
2 .

Solutions. a. P (A|B)+P (A|B̄) need not equal P (A). Suppose, for example, that A = Ω
and B is any event such that P (B) 6= 0 and P

(
B̄
)
6= 0. Then we have:

P (A|B) + P
(
A|B̄

)
=

P (A ∩B)

P (B)
+

P
(
A ∩ B̄

)
P
(
B̄
) =

P (B)

P (B)
+

P
(
B̄
)

P
(
B̄
)

= 1 + 1 = 2 6= 1 = P (Ω) = P (A) �

b. We need to check whether P (A∩B) = P (A)P (B), so we need to compute P (A), P (B),
and P (A ∩B).

Recall that A is the event that exactly two heads occurred in the five tosses. Since
P (H) = P (T ) = 1

2 for any single toss of the coin, any particular sequence of five tosses has

probability
(
1
2

)5
= 1

32 . There are
(
5
2

)
= 10 choices for which two tosses out of five came

up heads, so P (A) =
(
5
2

) (
1
2

)5
= 10 · 1

32 = 5
16 .

B is the event that the first two tosses included one head and one tail, so P (B) =
P (HT ) + P (TH) = 1

2 ·
1
2 + 1

2 ·
1
2 = 1

4 + 1
4 = 1

2 .
Finally, A∩B is the event that the first two tosses included one head and one tail and

the there were exactly two heads among the five tosses. That is, A ∩ B is the event that
exactly one head occurred in the first two tosses and exactly one head occurred in the last
three tosses. There are

(
2
1

)
= 2 ways to pick which of the first two tosses was the head, and(

3
1

)
= 3 ways to pick which of the last three tosses has a head. As any particular sequence

of five tosses has probability
(
1
2

)5
= 1

32 , so P (A ∩B) =
(
2
1

)(
3
1

) (
1
2

)5
= 2 · 3 · 1

32 = 3
16 .

Thus P (A∩B) = 3
16 6=

5
32 = 5

16 ·
1
2 = P (A)P (B), so A and B are not independent. �

c. Given that the density function is 0 for t < 0 and for t > 2, there is no area under the
graph except for 0 ≤ t ≤ 2. It follows that the median m must be between 0 and 2. Thus

P (X ≤ m) =

∫ m

−∞
f(t) dt =

∫ 0

−∞
0 dt +

∫ m

0

(
1− 1

2
t

)
dt = 0 +

(
t− 1

2
· t

2

2

)∣∣∣∣m
0

=

(
m− m2

4

)
−
(

0− 02

4

)
= m− m2

4
,

so the median must satisfy the equation m− m2

4 = 1
2 . Rearranging this to put everything

on one side gives m2

4 −m+ 1
2 = 0, and multiplying this by 4 to clear out the fractions gives



us m2 − 4m + 2 = 0. We can now apply the quadratic formula:

m =
−(−4)±

√
(−4)2 − 4 · 1 · 2
2 · 1

=
4±
√

16− 8

2
=

4±
√

8

2
=

4± 2
√

2

2
= 2±

√
2

As noted above, m must be between 0 and 2; since 2 +
√

2 > 2 while 0 < 2 −
√

2 < 2, it
follows that the median of X must be m = 2−

√
2 ≈ 0.5858. �
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3. Do any one (1) of a or b. [8 = 1 × 8 each]

a. Supose the continuous random variable X has density function g(t) =

{
e−t 0 ≤ t

0 t < 0
.

Let A be the event that X > 2 and B be the event that X > 1. Compute P (A|B).

b. A hand of four cards is randomly chosen, without replacement, from a standard 52-
card deck. What is the probability that at least one suit does not occur among the
four cards?

Solutions. a. We need to compute P (B) and P (A ∩ B). First, using the substitution

u = −t, so du = −dt, from which it follows that dt = (−1) du, and
t 1 ∞
u −1 −∞ , we have:

P (B) = P (X > 1) =

∫ ∞
1

g(t) dt =

∫ ∞
1

e−t dt =

∫ −∞
−1

eu(−1) du

=

∫ −1
−∞

eu du = eu|−1−∞ = e−1 − e−∞ =
1

e
− 0 =

1

e

Second, note that A ∩B is the event that X > 2 and X > 1, which are both true exactly
when X > 2, so A∩B = A. Using he same substitution as before, with the limits changing
as

t 2 ∞
u −2 −∞ , we have:

P (A ∩B) = P (A) = P (X > 2) =

∫ ∞
2

g(t) dt =

∫ ∞
2

e−t dt =

∫ −∞
−2

eu(−1) du

=

∫ −2
−∞

eu du = eu|−2−∞ = e−2 − e−∞ =
1

e2
− 0 =

1

e2

It follows that P (A|B) = P (A∩B)
P (B) = 1/e2

1/e = 1
e2 ·

e
1 = 1

e ≈ 0.3679. �

b. Note that there are
(
52
4

)
hands of four cards that can be drawn from a standard 52-card

deck, each equally likely to appear in a random draw.
We will use the inclusion-exclusion principle to count how many hands of four cards

have at least one suit missing. There are
(
4
1

)
= 4 ways to choose a suit that will not occur in

the hand and
(
39
4

)
ways to choose a hand of four cards from the remaining cards. However,(

4
1

)(
39
4

)
overcounts the hands in which two or three suits are missing. Counting the hands

with at least two suits missing, there are
(
4
2

)
= 6 ways to choose two suits that will not occur

and
(
26
4

)
ways to choose a hand of four cards from the remaining cards. However,

(
4
2

)(
26
4

)
overcounts the hands with three suits missing, and hence

(
4
1

)(
39
4

)
−
(
4
2

)(
26
4

)
undercounts the

hands with three suits missing. Counting the hands with three suits missing (i.e. those in
which only suit appears), there are

(
4
3

)
= 4 ways to choose three suits that will not occur

and
(
13
4

)
ways to choose a hand of four cards from the remaining cards. Thus there are(

4
1

)(
39
4

)
−
(
4
2

)(
26
4

)
+
(
4
3

)(
13
4

)
possible hands of four cards with at least one suit not occurring

in the hand.
It follows that the probability of at least one suit not occurring in randomly drawn

four-card hand is
(4
1)(

39
4 )−(4

2)(
26
4 )+(4

3)(
13
4 )

(52
4 )

. [Simplify this yourself, if you dare!] �

[Total = 30]


