Mathematics 1550 H - Introduction to probability
 Trent University, Winter 2016
 MATH 1550H Test
 Monday, 22 February, 2016
 Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any three (3) of a-d. $[12=3 \times 4$ each $]$
a. The continuous random variable W has the density function $f(t)=\left\{\begin{array}{cc}\frac{1}{4} & -2 \leq t \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$. Compute $P(W>1)$.
b. How many distinct ways are there to arrange ten books, three of which are identical to one another, on four shelves? (Each shelf could accommodate all ten books.)
c. A five-card hand is drawn at random from a standard 52-card deck. What is the probability that each of the five cards is of a different kind?
d. A fair five-sided die with faces numbered 1 to 5 is rolled twice. Let X be the sum of the faces that come up on the two rolls. Find the probability function of X.
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. If A and B are events in a sample space Ω, does $P(A \mid B)+P(A \mid \bar{B})=P(A)$? Verify that it must be so or find an example demonstrating otherwise.
b. A fair coin is tossed five times. Let A be the event that exactly two heads occurred in the five tosses and B be the event that the first two tosses included one head and one tail. Determine whether A and B are independent or not.
c. The continuous random variable X has density function $g(t)=\left\{\begin{array}{cl}1-\frac{1}{2} t & 0 \leq t \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$. Find the median of X; that is, the number m such that $P(X \leq m)=\frac{1}{2}$.
3. Do any one (1) of \mathbf{a} or \mathbf{b}. [$8=1 \times 8$ each $]$
a. Supose the continuous random variable X has density function $g(t)=\left\{\begin{array}{cc}e^{-t} & 0 \leq t \\ 0 & t<0\end{array}\right.$. Let A be the event that $X>2$ and B be the event that $X>1$. Compute $P(A \mid B)$.
b. A hand of four cards is randomly chosen, without replacement, from a standard 52 card deck. What is the probability that at least one suit does not occur among the four cards?

$$
[\text { Total }=30]
$$

