Mathematics 1550 H - Introduction to probability
 Trent University, Winter 2016

Solutions to Assignment \#4
(Un)expected Value

1. Verify that $f(t)=\frac{1}{\pi\left(1+t^{2}\right)}$ is a probability density function, but that a random variable X that has $f(t)$ as its probability density does not have a finite expected value. [7]
Hint: Try computing $E(X)$ and see what you get ...
Solution. First, we check that $f(t)$ is a valid probability density. $f(t)>0$ for all t because $1+t^{2}, 1$, abd π are all positive for all values of $t . f(t)$ is also continuous, and hence integrable. It remains to show that the area under the entire graph is 1 :

$$
\begin{aligned}
\int_{\infty}^{\infty} f(t) d t & =\int_{-\infty}^{\infty} \frac{1}{\pi\left(1+t^{2}\right)} d t=\left.\frac{1}{\pi} \arctan (t)\right|_{-\infty} ^{\infty} \\
& =\frac{1}{\pi} \arctan (\infty)-\frac{1}{\pi} \arctan (-\infty)=\frac{1}{\pi} \cdot \frac{\pi}{2}-\frac{1}{\pi} \cdot\left(-\frac{\pi}{2}\right)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Thus $f(t)$ is indeed a probability density function. [I prefer to use $\arctan (t)$ instead of $\tan ^{-1}(t)$ for the inverse function of the trig function $\tan (t)$, because people keep confusing $\tan ^{-1}(t)$ with $\frac{1}{\tan (t)}=\cot (t)$.]

If a random variable X were to have $f(t)$ as its probability density, then its expected value would be:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} t f(t) d t=\int_{-\infty}^{\infty} \frac{t}{\pi\left(1+t^{2}\right)} d t \begin{array}{l}
\text { Substitute } u=1+t^{2}, \text { so } \\
d u=2 t d t, \text { and thus } t d t=\frac{1}{2} d u \\
\text { and } \begin{array}{c}
t-\infty \\
u \infty
\end{array}
\end{array} \\
& =\frac{1}{2 \pi} \int_{\infty}^{\infty} \frac{1}{u} d u=\left.\frac{1}{2 \pi} \ln (u)\right|_{\infty} ^{\infty}=\frac{1}{2 \pi} \ln (\infty)-\frac{1}{2 \pi} \ln (\infty)=\infty-\infty
\end{aligned}
$$

Unfortunately, ∞ is not a real number and the expression $\infty-\infty$ has no clear definition, so $E(X)$ is not well-defined. [This is an over-simplification, but it's quicker than running through the defintion of improper integrals and using limits to the same end ...]
2. Find a function $g(t)$ such that a random variable X which has $g(t)$ as its probability density function has a finite expected value, but does not have a finite variance. [3]
Solution. $g(t)=\left\{\begin{array}{ll}2 t^{-3} & t \geq 1 \\ 0 & t<1\end{array}\right.$ is a simple example of such a probability density. I'll leave it to you to check that it is indeed a probability density. Now suppose a random variable X has $g(t)$ as its probability density. Then

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} t g(t) d t=\int_{-\infty}^{1} t \cdot 0 d t+\int_{1}^{\infty} t \cdot 2 t^{-3} d t=0+\int_{1}^{\infty} 2 t^{-2} d t \\
& =\left.2 \frac{t^{-1}}{-1}\right|_{1} ^{\infty}=-\left.\frac{2}{t}\right|_{1} ^{\infty}=\left(-\frac{2}{\infty}\right)-\left(-\frac{2}{1}\right)=0-(-2)=2
\end{aligned}
$$

so the expected value makes sense and is finite, but

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} t^{2} g(t) d t=\int_{-\infty}^{1} t^{2} \cdot 0 d t+\int_{1}^{\infty} t^{2} \cdot 2 t^{-3} d t=0+\int_{1}^{\infty} 2 t^{-1} d t \\
& =\left.2 \ln (t)\right|_{1} ^{\infty}=2 \ln (\infty)-2 \ln (1)=2 \cdot \infty-2 \cdot 0=\infty
\end{aligned}
$$

which is not finite, so neither is $V(X)=E\left(X^{2}\right)-[E(X)]^{2}$.

