Mathematics $\mathbf{1 5 5 0 H}$ - Introduction to probability
 Trent University, Winter 2016
 Assignment \#3
 Irrational Bias
 Due on Friday, 11 March, 2016.

You die ${ }^{\dagger}$. For your transgressions while still alive* you are initially placed by yourself in a featureless room with just one object: a thick biased coin which has a probability, when tossed, of getting a head of $P(H)=\frac{1}{\pi}$, a probability of getting a tail of $P(T)=\frac{1}{\sqrt{3}}$, and a probability of landing on edge of $P(E)=1-\frac{1}{\pi}-\frac{1}{\sqrt{3}}$. The Highest Authority gives you the following problems to solve ${ }^{\ddagger}$, with the promise that if and when you solve them, you can move on to the rest of your afterlife.

1. How could you simulate a fair coin using the biased coin you have been given? [2]
2. How could you simulate a fair standard six-sided die using the given coin? [2]
3. How could you simulate a biased coin with $P(H)=\frac{3}{5}=0.6$ and $P(T)=\frac{2}{5}=0.4$ using the given coin? [2]
4. How could you simulate a biased coin with $P(H)=\frac{1}{\sqrt{2}}$ and $P(T)=1-\frac{1}{\sqrt{2}}$ using the given coin? [4]

Note: $\frac{1}{\pi}, \frac{1}{\sqrt{3}}$, and $1-\frac{1}{\pi}-\frac{1}{\sqrt{3}}$, as well as $\frac{1}{\sqrt{2}}$ and $1-\frac{1}{\sqrt{2}}$, are all irrational, and so cannot be expressed as ratios of integers. Also, their decimal expansions (and expansions in other bases) are infinite and non-repeating.

[^0]
[^0]: \dagger Did you divide by zero? Nooooooo ...

 * If you don't have worthy transgressions, like dividing by zero, just imagine that you did.
 \ddagger No one expects to meet the Mathematical Inquisition once they're dead!

