MATH 1550H Test

Monday, 10 July
Time: 50 minutes

Name:

Student Number:

Question Mark

Total $\quad / 30$

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- If you do more parts of a question than were asked for, cross out the one you do not want marked; otherwise the marker will not consider the part they encounter last.
- You may use a calculator, so long as it cannot communicate with other devices, and one letter- or A4-size aid sheet with whatever you want written on all sides of it.

1. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. How many different ways are there to arrange all the letters in the word "unusual" if the three copies of " u " cannot be told apart?
b. A biased coin with $P(H)=0.6$ and $P(T)=0.4$ is tossed three times. What are the sample space and probability distribution function for this experiment?
c. A five-card hand is drawn from a standard 52 -card deck, without order or replacement. What is the probability that the cards in the hand are all of different kinds (i.e. ranks)?
2. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. The continuous random variable X has $f(x)=\left\{\begin{array}{cc}x / 8 & 0 \leq x \leq 4 \\ 0 & \text { otherwise }\end{array}\right.$ as its probability density function. Compute $P(X \geq 1 \mid X \leq 3)$.
b. A biased coin with $P(H)=0.6$ and $P(T)=0.4$ is tossed three times. The random variable Y counts the number of heads that come up in those three tosses. Compute the expected value of Y.
c. Suppose $g(x)=\left\{\begin{array}{cc}c\left(1-x^{2}\right) & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$, where c is a constant. Find the value of the constant c which would make $g(x)$ a valid probability density function.
3. Do one (1) of \mathbf{a} or \mathbf{b}. [10]
a. Suppose A and B are independent events in some sample space S, with both having positive probability. Does it have to be the case that $\bar{A}=\{s \in S \mid s \notin A\}$ is independent of B ? If so, explain why; if not, give an example in which A and B are independent, but \bar{A} and B are not.
b. A doctor gives a patient a test for a condition which occurs in the 1% of the population. Experience has shown that the test returns positive in 99% of the time and negative 1% of the time if the condition is present, and returns positive 5% of the time and negative 95% of the time if the condition is not present. If the test given by the doctor comes back positive, how likely is it that the patient actually has condition A ?
