Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2023 (S62)
 Solutions to Quiz \#7
 Variance

Instructions: Do the following problem. Please show all your work.

1. Two fair standard dice are rolled together and the random variable X returns the sum of the two faces that come up on the roll. Find the expected value and variance of X. [5]

Solution. We'll work this out from scratch. With two fair standard dice being rolled, the sample space is $S=\{(a, b) \mid a, b \in\{1,2,3,4,5,6\}\}$, so there are 36 equally possible outcomes. The corresponding values of $X=a+b$ are given by the following table:

$\mathbf{a} \backslash \mathbf{b}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

It follows that the possible outcomes of X are the integers 2 through 12, with probabilities given by

$$
P(X=x)=\frac{\# \text { outcomes adding up to } x}{36},
$$

giving us the following table:

$$
\begin{array}{cccccccccccc}
x & 2 & 2 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
P(X=x) & \frac{1}{36} & \frac{2}{36} & \frac{3}{36} & \frac{4}{36} & \frac{5}{36} & \frac{6}{36} & \frac{5}{36} & \frac{4}{36} & \frac{3}{36} & \frac{2}{36} & \frac{1}{36}
\end{array}
$$

By the definition of expected value for discrete random variables, the expected value of X is:

$$
\begin{aligned}
E(X)= & \sum_{k=2}^{12} x P(X=x) \\
= & 2 \cdot \frac{1}{36}+3 \cdot \frac{2}{36}+4 \cdot \frac{3}{36}+5 \cdot \frac{4}{36}+6 \cdot \frac{5}{36}+7 \cdot \frac{6}{36} \\
& +8 \cdot \frac{5}{36}+9 \cdot \frac{4}{36}+10 \cdot \frac{3}{36}+11 \cdot \frac{2}{36}+12 \cdot \frac{1}{36} \\
= & \frac{2+6+12+20+30+42+40+36+30+22+12}{36} \\
= & \frac{252}{36}=7
\end{aligned}
$$

Similarly, the expected value of X^{2} is:

$$
\begin{aligned}
E\left(X^{2}\right)= & \sum_{k=2}^{12} x^{2} P(X=x) \\
= & 2^{2} \cdot \frac{1}{36}+3^{2} \cdot \frac{2}{36}+4^{2} \cdot \frac{3}{36}+5^{2} \cdot \frac{4}{36}+6^{2} \cdot \frac{5}{36}+7^{2} \cdot \frac{6}{36} \\
& +8^{2} \cdot \frac{5}{36}+9^{2} \cdot \frac{4}{36}+10^{2} \cdot \frac{3}{36}+11^{2} \cdot \frac{2}{36}+12^{2} \cdot \frac{1}{36} \\
= & \frac{4+18+48+100+180+294+320+324+300+242+144}{36} \\
= & \frac{1974}{36}=\frac{329}{6} \approx 54.8333
\end{aligned}
$$

It now follows, by definition, that the variance of X is:

$$
V(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{329}{6}-7^{2}=\frac{329}{6}-49=\frac{329}{6}-\frac{294}{6}=\frac{35}{6} \approx 5.8333
$$

