Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2023 (S62)
 Solutions to Quiz \#6 Expected Values

Instructions: Do both of the following problems. Please show all your work.

1. A fair coin is tossed 5 times and the random variable X counts the number of heads that come in the 5 tosses. Use the definition of expected value for discrete random variables to compute the expected value of X. [3]
Solution. Since the coin is fair the probability of is equal to the probability of a tail, i.e. $\frac{1}{2}$, on any given toss. In 5 tosses of this coin, the number of heads, i.e. the output of X, is one of the integers 0 through 5 . If k is in this range, the probability of getting k heads, i.e. that $X=k$, is $P(X=k)=\binom{5}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{5-k}=\binom{5}{k}\left(\frac{1}{2}\right)^{5}$.

By the definition of expected value for discrete random variables, it follows that the expected value of X is:

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{5} k P(X=k)=\sum_{k=0}^{5} k\binom{5}{k}\left(\frac{1}{2}\right)^{5}=\left(\frac{1}{2}\right)^{5} \sum_{k=0}^{5} k\binom{5}{k} \\
& =\frac{1}{2^{5}}\left[0\binom{5}{0}+1\binom{5}{1}+2\binom{5}{2}+3\binom{5}{3}+4\binom{5}{4}+5\binom{5}{5}\right] \\
& =\frac{1}{32}[0 \cdot 1+1 \cdot 5+2 \cdot 10+3 \cdot 10+4 \cdot 5+5 \cdot 1] \\
& =\frac{0+5+20+30+20+5}{32}=\frac{80}{32}=\frac{5}{2}=2.5
\end{aligned}
$$

2. The continuous random variable T has $f(t)=\left\{\begin{array}{cc}2 / t^{3} & t \geq 1 \\ 0 & t<1\end{array}\right.$ as its probability density function. Use the definition of expected value for continuous random variables to compute the expected value of T. [2]

Solution. By the definition of expected value for continuous random variables, the expected value of T is:

$$
\begin{aligned}
E(T) & =\int_{-\infty}^{\infty} t f(t) d t=\int_{-\infty}^{1} t \cdot 0 d t+\int_{1}^{\infty} t \cdot \frac{2}{t^{3}} d t=\int_{-\infty}^{1} 0 d t+\int_{1}^{\infty} \frac{2}{t^{2}} d t \\
& =0+\int_{1}^{\infty} 2 t^{-2} d t=\left.2 \cdot \frac{t^{-2+1}}{-2+1}\right|_{1} ^{\infty}=\left.\frac{-2}{t}\right|_{1} ^{\infty}=\frac{-2}{\infty}-\frac{-2}{1}=0-(-2)=2
\end{aligned}
$$

