
Mathematics 1550H – Probability I: Introduction to Probability
Trent University, Summer 2023 (S62)

Solutions to Quiz #4
Continuous Probability

Instructions: Do all of the following problems. Please show all your work.

Let f(x) =

{
1/x2 x ≥ 1

0 x < 1
.

1. Verify that f(x) is a valid probability density function. [2]

Solution. First, when x < 1, we have f(x) = 0 ≥ 0, and when x ≥ 1, x2 ≥ 1 > 0, so
we have f(x) = 1

x2 > 0. Thus f(x) ≥ 0 for all x, satisfying the first condition for being a
valid probability density function.
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so f(x) also satisfies the second condition for being a valid probability density function.
Since it satisfies both of the necessary conditions, f(x) is indeed a valid probability

density function. �

Suppose that f(x) (as given above) is the probability density function of some random
process (technically, of a continuous random variable). Suppose A = [−3, 3]∪ [6, 12] is the
event that the process (or random variable) returns a value between −3 and 3 or between
6 and 12, and that B = [2, 9] is the event that the process (or random variable) returns a
value between 2 and 9.

2. Compute P (B|A) and P (A|B). [3]

Solution. Observe that A∩B = ([−3, 3] ∪ [6, 12])∩ [2, 9] = [2, 3]∪ [6, 9]. To save a bit of

effort, we will use the fact that
−1

x
is the antiderivative of

1

x2
without further ado, having

already worked it in solving question 1. Here we go:

P (A) =
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∫ 12

6

f(x) dx =
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P (B) =
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P (A ∩B) =
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With these probabilities in hand, we can compute the desired conditional probabilities:

P (A|B) =
P (A ∩B)

P (B)
=

2
9
7
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=
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9
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7
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7
≈ 0.5714

P (B|A) =
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≈ 0.2963 �
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