Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2023 (S62)

Solutions to Quiz \#4

Continuous Probability

Instructions: Do all of the following problems. Please show all your work.
Let $f(x)=\left\{\begin{array}{cl}1 / x^{2} & x \geq 1 \\ 0 & x<1\end{array}\right.$.

1. Verify that $f(x)$ is a valid probability density function. [2]

Solution. First, when $x<1$, we have $f(x)=0 \geq 0$, and when $x \geq 1, x^{2} \geq 1>0$, so we have $f(x)=\frac{1}{x^{2}}>0$. Thus $f(x) \geq 0$ for all x, satisfying the first condition for being a valid probability density function.

Second,

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) & =\int_{-\infty}^{1} 0 d x+\int_{1}^{\infty} \frac{1}{x^{2}} d x=0+\int_{1}^{\infty} x^{-2} d x=\left.\frac{x^{-2+1}}{-2+1}\right|_{1} ^{\infty} \\
& =-\left.x^{-1}\right|_{1} ^{\infty}=\left.\frac{-1}{x}\right|_{1} ^{\infty}=\frac{-1}{\infty}-\frac{-1}{1}=0-(-1)=1
\end{aligned}
$$

so $f(x)$ also satisfies the second condition for being a valid probability density function.
Since it satisfies both of the necessary conditions, $f(x)$ is indeed a valid probability density function.

Suppose that $f(x)$ (as given above) is the probability density function of some random process (technically, of a continuous random variable). Suppose $A=[-3,3] \cup[6,12]$ is the event that the process (or random variable) returns a value between -3 and 3 or between 6 and 12 , and that $B=[2,9]$ is the event that the process (or random variable) returns a value between 2 and 9 .
2. Compute $P(B \mid A)$ and $P(A \mid B)$. [3]

Solution. Observe that $A \cap B=([-3,3] \cup[6,12]) \cap[2,9]=[2,3] \cup[6,9]$. To save a bit of effort, we will use the fact that $\frac{-1}{x}$ is the antiderivative of $\frac{1}{x^{2}}$ without further ado, having already worked it in solving question 1. Here we go:

$$
\begin{aligned}
P(A) & =\int_{-3}^{3} f(x) d x+\int_{6}^{12} f(x) d x=\int_{-3}^{1} 0 d x+\int_{1}^{3} \frac{1}{x^{2}} d x+\int_{6}^{12} \frac{1}{x^{2}} d x \\
& =0+\left.\frac{-1}{x}\right|_{1} ^{3}+\left.\frac{-1}{x}\right|_{6} ^{12}=\frac{-1}{3}-\frac{-1}{1}+\frac{-1}{12}-\frac{-1}{6}=-\frac{1}{3}+1-\frac{1}{12}+\frac{1}{6} \\
& =-\frac{4}{12}+\frac{12}{12}-\frac{1}{12}+\frac{2}{12}=\frac{-4+12-1+2}{12}=\frac{9}{12}=\frac{3}{4}=0.75 \\
P(B) & =\int_{2}^{9} f(x) d x=\int_{2}^{9} \frac{1}{x^{2}} d x=\left.\frac{-1}{x}\right|_{2} ^{9}=\frac{-1}{9}-\frac{-1}{2}=-\frac{1}{9}+\frac{1}{2} \\
& =-\frac{2}{18}+\frac{9}{18}=\frac{7}{18} \approx 0.3889
\end{aligned}
$$

$$
\begin{aligned}
P(A \cap B) & =\int_{2}^{3} f(x) d x+\int_{6}^{9} f(x) d x=\int_{2}^{3} \frac{1}{x^{2}} d x+\int_{6}^{9} \frac{1}{x^{2}} d x=\left.\frac{-1}{x}\right|_{2} ^{3}+\left.\frac{-1}{x}\right|_{6} ^{9} \\
& =\frac{-1}{3}-\frac{-1}{2}+\frac{-1}{9}-\frac{-1}{6}=-\frac{1}{3}+\frac{1}{2}-\frac{1}{9}+\frac{1}{6}=-\frac{6}{18}+\frac{9}{18}-\frac{2}{18}+\frac{3}{18} \\
& =\frac{-6+9-2+3}{18}=\frac{4}{18}=\frac{2}{9} \approx 0.2222
\end{aligned}
$$

With these probabilities in hand, we can compute the desired conditional probabilities:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{2}{9}}{\frac{7}{18}}=\frac{2}{9} \cdot \frac{18}{7}=\frac{4}{7} \approx 0.5714 \\
& P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{2}{9}}{\frac{3}{4}}=\frac{2}{9} \cdot \frac{4}{3}=\frac{8}{27} \approx 0.2963
\end{aligned}
$$

