Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2023 (S62)
 Final Examination
 14:00-14:50 Tuesday, 1 August, in ENW 117

Instructions: Do both of parts A and B, and, if you wish, part C. Show all your work and simplify answers as much as practical. If in doubt about something, ask!
Aids: Calculator, letter- or A4-size aid sheet, standard normal table (supplied), one brain.
Part A. Do all of 1-5.

$$
\text { [Subtotal }=60 / 90]
$$

1. A fair coin is tossed twice. If it comes up heads on the second toss, the experiment ends; if it comes up tails, the coin is tossed twice more and then the experiments ends.
a. Draw the complete tree diagram for this experiment. [3]
b. What are the sample space and probability function for this experiment? [5]
c. Let E be the event that an even number of heads comes up in the course of the experiment and let F be the event that four tosses are made during the experiment. Determine whether the events E and F are independent or not. [5]
2. Suppose the continuous random variable X has $f(x)=\left\{\begin{array}{cl}3 x^{2} & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$ as its probability density function.
a. Check that $f(x)$ is a valid probability density function. [7]
b. Compute the expected value $E(X)$ and the variance $V(X)$ of X. [8]
3. A five-card hand drawn from a standard 52 -card deck is a straight if it is made of cards of consecutive kinds, ${ }^{*}$ where the order of the kinds wraps around the ends. For example, the hand $4 \boldsymbol{\uparrow}, 3 \boldsymbol{\$}, 2 \boldsymbol{\&}, A \cup, K \boldsymbol{\uparrow}$ would count as a straight.
a. If the order in which the hand is drawn doesn't matter, how many different straights are possible? [5]
b. What is the probability that a hand is a straight, given that it is a flush, i.e. that all the cards in the hand are from the same suit? [7]
4. Suppose W is continuous random variable with a normal distribution that has $\mu=$ $E(W)=3$ and $\sigma^{2}=V(W)=4$. Compute $P(W \geq 1.7 \mid W \leq 3.9)$ with the help of a standard normal table. [10]
5. Die A is a fair standard die and die B is fair four-sided die with faces numbered 1 through 4. One of the two dice is chosen at random, with equal likelihood, and rolled. The random variable X records the number on the face of the die that came up on the roll. Use Bayes' Theorem to compute the probability that die B had been chosen, given that $X=2$. [10]
[Parts \mathbf{B} and \mathbf{C} are on page 2.]

[^0][Part A is on page 1.]
Part B. Do any two (2) of 6-9.
[Subtotal $=30 / 90]$
6. An urn contains 10 balls, 9 of which are purple and 1 of which is green. The balls are drawn from the urn, one at a time and without replacement, until the green ball is drawn. The random variable X tells us which draw the green ball appeared on.
a. What is the probability distribution function of X ? [6]
b. What kind of distribution does X have? [1]
c. What are the expected value $E(X)$ and variance $V(X)$ of X ? [8]

7. The continuous random variable X has $g(x)=\left\{\begin{array}{cl}x e^{-x^{2}} & x \geq 0 \\ -x e^{-x^{2}} & x<0\end{array}\right.$ as its probability density function.
a. Verify that $g(x)$ is a valid probability density function. [6]
b. Without doing any calculus, what is the expected value $E(X)$ of X ? [2]
c. With at least some calculus, what is the variance $V(X)$ of X ? [7]
8. Suppose Y is a continuous random variable that has a normal distribution with expected value $E(Y)=10$ and variance $V(X)=9$.
a. Find an upper bound for $P(Y \geq 20)$ using Markov's Inequality. [3]
b. Find an upper bound for $P(Y \geq 20)$ using Chebyshev's Inequality. [6]
b. Compute $P(Y \geq 20)$ with the help of a standard normal table. [6]
9. Suppose the discrete random variables X and Y are jointly distributed according to the given table.
a. Compute the expected values $E(X)$ and $E(Y)$, the variances $V(X)$ and $V(Y)$, and also the covariance

$Y \backslash X$	0	1	2
1	0	0.2	0.2
2	0.3	0	0.1
3	0.1	0.1	0

b. Determine whether X and Y are independent. [1] $\begin{array}{llll}3 & 0.1 & 0.1 & 0\end{array}$
c. Let $U=X+3 Y$. Compute $E(U)$ and $V(U)$. [4]

$$
[\text { Total }=90]
$$

Part C. Bonus time!
T. Suppose X_{1} and X_{2} each have an exponential distribution with $\lambda=1$. What kind of distribution does $X=X_{1}+X_{2}$ have? (No calculation or proof required, just an answer.) [1]
H. Write a haiku touching on probability or mathematics in general. [1]
haiku?
seventeen in three:
five and seven and five of
syllables in lines
I hope that you enjoyed the course. Enjoy the rest of the summer!

[^0]: * The kinds are, in order, $A, K, Q, J, 10,9,8,7,6,5,4,3$, and 2 , and the suits are $\odot, \diamond, \boldsymbol{\&}$, and

