Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2023 (S62)

Solutions to the Final Examination
14:00-14:50 Tuesday, 1 August, in ENW 117
Instructions: Do both of parts A and B, and, if you wish, part C. Show all your work and simplify answers as much as practical. If in doubt about something, ask!
Aids: Calculator, letter- or A4-size aid sheet, standard normal table (supplied), one brain.
Part A. Do all of 1-5.

$$
\text { [Subtotal }=60 / 90]
$$

1. A fair coin is tossed twice. If it comes up heads on the second toss, the experiment ends; if it comes up tails, the coin is tossed twice more and then the experiments ends.
a. Draw the complete tree diagram for this experiment. [3]
b. What are the sample space and probability function for this experiment? [5]
c. Let E be the event that an even number of heads comes up in the course of the experiment and let F be the event that four tosses are made during the experiment. Determine whether the events E and F are independent or not. [5]

Solution. a. Here it is:

b. The samples space is

$$
S=\{H H, T H, H T H H, H T H T, H T T H, H T T T, T T H H, T T H T, T T T H, T T T T\},
$$

and the probability distribution function, since the coin is fair, is given by $m(H H)=$ $m(T T)=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=0.25$ and $m(\omega)=\left(\frac{1}{2}\right)^{4}=\frac{1}{16}=0.0625$ if $\omega \in S \backslash\{H H, T H\}$.
c. We have $E=\{H H, H T H T, H T T H, T T H H, T T T T\}$, so $P(E)=\frac{1}{4}+\frac{4}{16}=\frac{1}{2}=0.5$, $F=\{H T H H, H T H T, H T T H, H T T T, T T H H, T T H T, T T T H, T T T T\}$, so $P(F)=$ $\frac{8}{16}=\frac{1}{2}=0.5$, and $E \cap F=\{H T H T, H T T H, T T H H, T T T T\}$, so $P(E \cap F)=\frac{4}{16}=\frac{1}{4}=$ 0.25. Since $P(E \cap F)=\frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=P(E) P(F)$, it follows by definition that E and F are independent.
2. Suppose the continuous random variable X has $f(x)=\left\{\begin{array}{cl}3 x^{2} & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$ as its probability density function.
a. Check that $f(x)$ is a valid probability density function. [7]
b. Compute the expected value $E(X)$ and the variance $V(X)$ of X. [8]

Solution. a. Observe that $f(x)=3 x^{2} \geq 0$ (since $x^{2} \geq 0$) when $0 \leq x \leq 1$, and $f(x) 0 \geq 0$ otherwise. Thus $f(x) \geq 0$ for all x, meeting the first requirement for a valid probability density function.

For the second requirement for a valid probability density function we need to check that $\int_{-\infty}^{\infty} f(x) d x=1$. Here we go:

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{0} 0 d x+\int_{0}^{1} 3 x^{2} d x+\int_{1}^{\infty} 0 d x=0+\left.3 \frac{x^{3}}{3}\right|_{0} ^{1}+0 \\
& =\left.x^{3}\right|_{0} ^{1}=1^{3}-0^{3}=1-0=1
\end{aligned}
$$

Since it satisfies both requirements to be a valid probability density function, $f(x)$ is one.
b. We set up the relevant definitions and compute away:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{0} x \cdot 0 d x+\int_{0}^{1} x \cdot 3 x^{2} d x+\int_{1}^{\infty} x \cdot 0 d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{1} 3 x^{3} d x+\int_{1}^{\infty} 0 d x=0+\left.3 \frac{x^{4}}{4}\right|_{0} ^{1}+0 \\
& =\frac{3}{4} 1^{4}-\frac{3}{4} 0^{4}=\frac{3}{4} \cdot 1-\frac{3}{4} \cdot 0=\frac{3}{4}-0=\frac{3}{4}=0.75 \\
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{-\infty}^{0} x^{2} \cdot 0 d x+\int_{0}^{1} x^{2} \cdot 3 x^{2} d x+\int_{1}^{\infty} x^{2} \cdot 0 d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{1} 3 x^{5} d x+\int_{1}^{\infty} 0 d x=0+\left.3 \frac{x^{5}}{5}\right|_{0} ^{1}+0 \\
& =\frac{3}{5} 1^{5}-\frac{3}{5} 0^{5}=\frac{3}{5} \cdot 1-\frac{3}{5} \cdot 0=\frac{3}{5}-0=\frac{3}{5}=0.6 \\
V(X) & =E\left(X^{2}\right)-[E(X)]^{2}=\frac{3}{5}-\left[\frac{3}{4}\right]^{2}=\frac{3}{5}-\frac{9}{16} \\
& =\frac{48}{80}-\frac{45}{80}=\frac{3}{80}=0.0375 \quad \square
\end{aligned}
$$

3. A five-card hand drawn from a standard 52 -card deck is a straight if it is made of cards of consecutive kinds,* where the order of the kinds wraps around the ends. For example, the hand $4 \boldsymbol{\uparrow}, 3 \boldsymbol{\$}, 2 \boldsymbol{*}, A \odot, K \boldsymbol{\omega}$ would count as a straight.
a. If the order in which the hand is drawn doesn't matter, how many different straights are possible? [5]
b. What is the probability that a hand is a straight, given that it is a flush, i.e. that all the cards in the hand are from the same suit? [7]

Solution. a. If only the kinds are considered, there are 13 possible straights because here are 13 kinds We can list them by the "top" card: $A K Q J 10, K Q J 109, \ldots, 2 A K Q J$. However, each of the five cards in a straight could come from any of the four suits. There are therefore $13 \cdot 4^{5}=13312$ possible straights.
b. To get a flush, we need to pick one of the 4 suits and then choose a hand of five cards from the 13 cards in that suit. There are therefore $4 \cdot\binom{13}{5}=4 \cdot 1287=5148$ possible flushes. Since each of the $\binom{52}{5}=2598960$ possible five-card hands (as order doesn't matter) is equally likely, the probability of a hand being a flush is $\frac{5148}{2598960}$.

For a hand to be both a flush and a straight, we need to pick one of the 4 suits and then choose one of the 13 cards in that suit to be the "top" card of the straight, as in a above. There are therefore $4 \cdot 13=52$ possible hands that are both a straight and a flush. Since each of the $\binom{52}{5}=2598960$ possible five-card hands is equally likely, the probability of a hand being a straight and a flush is $\frac{52}{2598960}$.

It now follows that the probability that a hand is a straight, given that it is a flush, is:

$$
P(\text { straight } \mid \text { flush })=\frac{P(\text { straight and flush })}{P(\text { flush })}=\frac{\frac{52}{2598960}}{\frac{5948}{2598960}}=\frac{52}{5148}=\frac{1}{99} \approx 0.0101
$$

[^0]4. Suppose W is continuous random variable with a normal distribution that has $\mu=$ $E(W)=3$ and $\sigma^{2}=V(W)=4$. Compute $P(W \geq 1.7 \mid W \leq 3.9)$ with the help of a standard normal table. [10]

Solution. We convert the necessary probabilities for W into ones for the standard normal random variable $Z=\frac{W-\mu}{\sigma}$. Note that the standard deviation of W is $\sigma=\sqrt{V(W)}=$ $\sqrt{4}=2$. Here we go, with the help of our standard normal table:

$$
\begin{aligned}
P(W \leq 3.9) & =P\left(\frac{W-3}{2} \leq \frac{3.9-3}{2}\right)=P(Z \leq 0.45) \approx 0.6736 \\
P(W \geq 1.7 \text { and } W \leq 3.9) & =P(1.7 \leq W \leq 3.9)=P\left(\frac{1.7-3}{2} \leq \frac{W-3}{2} \leq \frac{3.9-3}{2}\right) \\
& =P(-0.65 \leq Z \leq 0.45)=P(Z \leq 0.45)-P(Z<-0.65) \\
& \approx 0.6736-0.2578=0.4158 \\
P(W \geq 1.7 \mid W \leq 3.9) & =\frac{P(W \geq 1.7 \text { and } W \leq 3.9)}{P(W \leq 3.9)} \approx \frac{0.4158}{0.6736} \approx 0.6173
\end{aligned}
$$

5. Die A is a fair standard die and die B is fair four-sided die with faces numbered 1 through 4. One of the two dice is chosen at random, with equal likelihood, and rolled. The random variable X records the number on the face of the die that came up on the roll. Use Bayes' Theorem to compute the probability that die B had been chosen, given that $X=2$. [10]
Solution. The probability that $X=2$, i.e 2 came up when the chosen die was rolled, if die A was the one chosen is $P(X=2 \mid A)=\frac{1}{6}$, since 2 is on just one of the six faces of die A. Similarly, the probability that $X=2$ if die B was chosen is $P(X=2 \mid B)=\frac{1}{4}$. We are given that the dice are equally likely to be chosen, i.e. that $P(A)=P(B)=\frac{1}{2}$. By Bayes' Theorem, it now follows that the probability that die B was chosen, given that $X=2$, is:

$$
\begin{aligned}
P(B \mid X=2) & =\frac{P(X=2 \mid B) P(B)}{P(X=2 \mid A) P(A)+P(X=2 \mid B) P(B)}=\frac{\frac{1}{4} \cdot \frac{1}{2}}{\frac{1}{6} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{1}{2}}=\frac{\frac{1}{8}}{\frac{1}{12}+\frac{1}{8}} \\
& =\frac{\frac{1}{8}}{\frac{2}{24}+\frac{3}{24}}=\frac{\frac{1}{8}}{\frac{5}{24}}=\frac{1}{8} \cdot \frac{24}{5}=\frac{3}{5}=0.6
\end{aligned}
$$

Part B. Do any two (2) of 6-9.
[Subtotal $=30 / 90]$
6. An urn contains 10 balls, 9 of which are purple and 1 of which is green. The balls are drawn from the urn, one at a time and without replacement, until the green ball is drawn. The random variable X tells us which draw the green ball appeared on.
a. What is the probability distribution function of X ? [6]
b. What kind of distribution does X have? [1]
c. What are the expected value $E(X)$ and variance $V(X)$ of X ? [8]

Solution. a. Note that X can take on the integer values 1 though 10; since balls are not replaced and there are 10 balls, only one of which is green, there can be at most 10 draws. On any given draw, if there are a purple balls and the green ball remaining, one has a probability of $\frac{a}{a+1}$ of drawing a purple ball and a probability of $\frac{1}{a}$ of drawing the green one. The probability distribution function $m(k)=P(X=k)$ of X is then given by:

$$
\begin{aligned}
& m(1)=P(X=1)=\frac{1}{10} \\
& m(2)=P(X=2)=\frac{9}{10} \cdot \frac{1}{9}=\frac{1}{10} \\
& m(3)=P(X=3)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{1}{8}=\frac{1}{10} \\
& m(4)=P(X=4)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} \cdot \frac{1}{7}=\frac{1}{10} \\
& m(5)=P(X=5)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} \cdot \frac{6}{7} \cdot \frac{1}{6}=\frac{1}{10} \\
& m(6)=P(X=6)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} \cdot \frac{6}{7} \cdot \frac{5}{6} \cdot \frac{1}{5}=\frac{1}{10} \\
& m(7)=P(X=7)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} \cdot \frac{6}{7} \cdot \frac{5}{6} \cdot \frac{4}{5} \cdot \frac{1}{4}=\frac{1}{10} \\
& m(8)=P(X=8)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} \cdot \frac{6}{7} \cdot \frac{5}{6} \cdot \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{1}{3}=\frac{1}{10} \\
& m(9)=P(X=9)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} \cdot \frac{6}{7} \cdot \frac{5}{6} \cdot \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2}=\frac{1}{10} \\
& m(10)=P(X=10)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} \cdot \frac{6}{7} \cdot \frac{5}{6} \cdot \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{1}=\frac{1}{10}
\end{aligned}
$$

b. Since every value of X is equally likely, X has a uniform distribution.
c. Here we go:

$$
\begin{aligned}
E(X) & =\sum_{k=1}^{10} k P(X=k)=\sum_{k=1}^{10} k \cdot \frac{1}{10}=\frac{1}{10} \sum_{k=1}^{10} k=\frac{1}{10} \cdot \frac{10(10+1)}{2}=\frac{11}{2}=5.5 \\
E\left(X^{2}\right) & =\sum_{k=1}^{10} k^{2} P(X=k)=\sum_{k=1}^{10} k^{2} \cdot \frac{1}{10}=\frac{1}{10} \sum_{k=1}^{10} k^{2}=\frac{1}{10} \cdot \frac{10(10+1)(2 \cdot 10+1)}{6} \\
& =\frac{231}{6}=38.5 \\
V(X) & =E\left(X^{2}\right)-[E(X)]^{2}=38.5-5.5^{2}=38.5-30.25=7.25
\end{aligned}
$$

7. The continuous random variable X has $g(x)=\left\{\begin{array}{cl}x e^{-x^{2}} & x \geq 0 \\ -x e^{-x^{2}} & x<0\end{array}\right.$ as its probability density function.
a. Verify that $g(x)$ is a valid probability density function. [6]
b. Without doing any calculus, what is the expected value $E(X)$ of X ? [2]
c. With at least some calculus, what is the variance $V(X)$ of X ? [7]

Solution. a. Since $e^{-x^{2}}>0$ for all $x, g(x)=x e^{-x^{2}} \geq 0$ when $x \leq 0$ and, since it is also true that $-x>0$ when $x<0, g(x)=-x e^{-x^{2}}>0$ when $x<0$. Thus $g(x) \geq 0$ for all x, satisfying the first condition needed to be a valid probability density.

For the second condition needed to be a valid probability density, we need to check that $\int_{-\infty}^{\infty} g(x) d x=1$. We will do so with the help of the substitution $u=-x^{2}$, so $d u=-2 x d x$, and hence $x d x=\left(-\frac{1}{2}\right) d u$. We will also change the limits as we go along: $\begin{array}{cccc}x & -\infty & 0 & \infty \\ u & -\infty & 0 & -\infty\end{array}$. Here goes:

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(x) d x & =\int_{-\infty}^{0}(-1) x e^{-x^{2}} d x+\int_{0}^{\infty} x e^{-x^{2}} d x \\
& =\int_{-\infty}^{0}(-1) e^{u}\left(-\frac{1}{2}\right) d u+\int_{0}^{-\infty} e^{u}\left(-\frac{1}{2}\right) d u \\
& =\frac{1}{2} \int_{-\infty}^{0} e^{u} d u-\frac{1}{2} \int_{0}^{-\infty} e^{u} d u \\
& =\frac{1}{2} \int_{-\infty}^{0} e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{u} d u=\int_{-\infty}^{0} e^{u} d u \\
& =\left.e^{u}\right|_{-\infty} ^{0}=e^{0}-e^{-\infty}=1-0=1
\end{aligned}
$$

Thus $g(x)$ meets both conditions needed to be a valid probability density function.
b. Observe that $g(x)$ is an even function, that is, $g(-x)=g(x)$ for all x : if $x<0$, then $-x>0$, so $g(-x)=(-x) e^{-(-x)^{2}}=-x e^{-x^{2}}=g(x)$; if $x>0$, then $-x<0$, so $g(-x)=-(-x) e^{-(-x)^{2}}=x e^{-x^{2}}=g(x)$; and if $x=0$, then $-0=0 \geq 0$, so $g(-0)=g(0)=$ $0 e^{-0^{2}}=0$. It follows that $x g(x)$ is an odd function, that is, $(-x) g(-x)=-x g(x)$ for all x. This, in turn means that $\int_{-\infty}^{0} x g(x) d x=-\int_{0}^{\infty} x g(x) d x$, which is true for any odd function defined for all x for which the intergrals are defined, so $E(X)=\int_{-\infty}^{\infty} x g(x) d x=$ $\int_{-\infty}^{0} x g(x) d x+\int_{0}^{\infty} x g(x) d x=0$.

A little more informally and without mentioning the integrals (they are mentions of calculus, even if we didn't do any :-), each positive x has the same probability $g(x)=g(-x)$ as its negative x, so the weighted probabilities cancel out, leaving 0 as the only possibility for the expected value of X.
c. Our principal tool will be the same substitution used in part a, namely $u=-x^{2}$, so $x^{2}=-u, d u=-2 x d x$, and hence $x d x=\left(-\frac{1}{2}\right) d u$, with the limits changing accordingly, $\begin{array}{cccc}x & -\infty & 0 & \infty \\ u & -\infty & 0 & -\infty\end{array}$. Here goes:

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} g(x) d x=\int_{-\infty}^{0} x^{2} \cdot(-1) x e^{-x^{2}} d x+\int_{0}^{\infty} x^{2} \cdot x e^{-x^{2}} d x \\
& =\int_{-\infty}^{0}(-1) x^{3} e^{-x^{2}} d x+\int_{0}^{\infty} x^{3} e^{-x^{2}} d x \\
& =\int_{-\infty}^{0} u e^{u}\left(-\frac{1}{2}\right) d u+\int_{0}^{-\infty}(-u) e^{u}\left(-\frac{1}{2}\right) d u \\
& =-\frac{1}{2} \int_{-\infty}^{0} u e^{u} d u+\frac{1}{2} \int_{0}^{-\infty} u e^{u} d u=\frac{1}{2} \int_{-\infty}^{0} u e^{u} d u-\frac{1}{2} \int_{-\infty}^{0} u e^{u} d u \\
& =-\int_{-\infty}^{0} u e^{u} d u \quad \text { Use integration by parts with } u=u \\
& =-\left[\left.u e^{u}\right|_{-\infty} ^{0}-\int_{-\infty}^{0} 1 e^{u} d u\right]=-\left[0 e^{0}-(-\infty) e^{-\infty}\right]+\left.e^{u}\right|_{-\infty} ^{0} \\
& =-[0-0]+\left[e^{0}-e^{-\infty}\right]=0+[1-0]=1
\end{aligned}
$$

We were a little informal with evaluating the expressions at the end, exploiting the fact that exponential dominate polynomials, so, e.g. $\infty e^{-\infty}=\frac{\infty}{e^{\infty}}=0$. We can now compute the variance of X :

$$
V(X)=E\left(X^{2}\right)-[E(X)]^{2}=1-0^{2}=1
$$

8. Suppose Y is a continuous random variable that has a normal distribution with expected value $E(Y)=10$ and variance $V(X)=9$.
a. Find an upper bound for $P(Y \geq 20)$ using Markov's Inequality. [3]
b. Find an upper bound for $P(Y \geq 20)$ using Chebyshev's Inequality. [6]
c. Compute $P(Y \geq 20)$ with the help of a standard normal table. [6]

Solution. a. Since every normal distribution takes on some negative values and Markov's Inequality only applies to non-negative random variables, we can't legitimately apply Markov's Inequality in this case. If we blindly tried anyway, we would "get" something like $P(Y \geq 20) \leq \frac{E(Y)}{20}=\frac{10}{20}=\frac{1}{2}=0.5$.
b. A little crude. Recall that X has expected value $E(X)=10$ and note that X has standard deviation $\sigma=\sqrt{V(X)}=\sqrt{9}=3$. Observe that $P(Y \geq 20)=P(Y-10 \geq$ $20-10)=P(Y-10 \geq 10) \leq P(|Y-10| \geq 10)$, since $|Y-10| \geq 10$ captures more values of Y than $Y-10 \geq 10$. We can apply Chebyshev's Inequality to $(|Y-10| \geq 10)$ if we decompose 10 into $k \sigma=3 k$: if $10=3 k$, then $k=\frac{10}{3}$. It now follows that:

$$
\begin{aligned}
P(Y \geq 20) & \leq P(|Y-10| \geq 10)=P\left(|Y-10| \geq \frac{10}{3} \cdot 3\right) \\
& \leq \frac{1}{\left(\frac{10}{3}\right)^{2}}=\left(\frac{3}{10}\right)^{2}=\frac{9}{100}=0.09
\end{aligned}
$$

b. A little clever. We'll use all the information in the slightly crude approach above, with one extra bit thrown in. A normal distribution's density function is symmetric about the mean of the distribution which in this case is $E(Y)=10$. It follows that $P(Y-10 \geq$ $10)=P(Y-10 \leq-10)$ and, since $P(|Y-10| \geq 10)=P(Y-10 \leq-10)+P(Y-10 \geq$ 10) $=2 P(Y-10 \geq 10)$, we have that $P(Y-10 \geq 10)=\frac{1}{2} P(|Y-10| \geq 10)$. Reusing the calculation in the crude solution, it now follows that

$$
P(Y \geq 20)=P(Y-10 \geq 10)=\frac{1}{2} P(|Y-10| \geq 10) \leq \frac{1}{2} \cdot 0.09=0.045
$$

which cuts the upper bound obtained in the slightly crude solution in half.
c. Since Y has a normal distribution with expected value $\mu=E(Y)=10$ and variance $\sigma^{2}=V(X)=9$, and hence standard deviation $\sigma=3, Z=\frac{Y-10}{3}$ has a standard normal distribution. We convert the desired probability into one for Z and evaluate it using the suoolied standard normal table:

$$
\begin{aligned}
P(Y \geq 20) & =P\left(\frac{Y-10}{3} \geq \frac{20-10}{3}\right)=P\left(Z \geq \frac{10}{3}\right)=1-P\left(Z<\frac{10}{3}\right) \\
& \approx 1-P(Z<3.33) \approx 1-0.9996=0.0004
\end{aligned}
$$

Note that this is much smaller than either of the upper bounds we obtained in part \mathbf{b}.
9. Suppose the discrete random variables X and Y are jointly distributed according to the given table.
a. Compute the expected values $E(X)$ and $E(Y)$, the variances $V(X)$ and $V(Y)$, and also the covariance $\operatorname{Cov}(X, Y)$ of X and Y. [10]
b. Determine whether X and Y are independent. [1]

$Y \backslash X$	0	1	2
1	0	0.2	0.2
2	0.3	0	0.1
3	0.1	0.1	0

c. Let $U=X+3 Y$. Compute $E(U)$ and $V(U)$. [4]

Solution. a. Here we go:

$$
\begin{aligned}
E(X)= & 0(0+0.3+0.1)+1(0.2+0+0.1)+2(0.2+0.1+0) \\
= & 0 \cdot 0.4+1 \cdot 0.3+2 \cdot 0.3=0+0.3+0.6=0.9 \\
E(Y)= & 1(0+0.2+0.2)+2(0.3+0+0.1)+3(0.1+0.1+0) \\
= & 1 \cdot 0.4+2 \cdot 0.4+3 \cdot 0.2=0.4+0.8+0.6=1.8 \\
E\left(X^{2}\right)= & 0^{2}(0+0.3+0.1)+1^{2}(0.2+0+0.1)+2^{2}(0.2+0.1+0) \\
= & 0 \cdot 0.4+1 \cdot 0.3+4 \cdot 0.3=0+0.3+1.2=1.5 \\
E\left(Y^{2}\right)= & 1^{2}(0+0.2+0.2)+2^{2}(0.3+0+0.1)+3^{2}(0.1+0.1+0) \\
= & 1 \cdot 0.4+4 \cdot 0.4+9 \cdot 0.2=0.4+1.6+1.8=3.8 \\
V(X)= & E\left(X^{2}\right)-[E(X)]^{2}=1.5-[0.9]^{2}=1.5-0.81=0.69 \\
V(Y)= & E\left(Y^{2}\right)-[E(Y)]^{2}=3.8-[1.8]^{2}=3.8-3.24=0.56 \\
E(X Y)= & 0 \cdot 1 \cdot 0+1 \cdot 1 \cdot 0.2+2 \cdot 1 \cdot 0.2 \\
& +0 \cdot 2 \cdot 0.3+1 \cdot 2 \cdot 0+2 \cdot 2 \cdot 0.1 \\
& +0 \cdot 3 \cdot 0.1+1 \cdot 3 \cdot 0.1+2 \cdot 3 \cdot 0 \\
= & 0+0.2+0.4+0+0+0.4+0+0.3+0=1.3 \\
\operatorname{Cov}(X, Y)= & E(X Y)-E(X) E(Y)=1.3-0.9 \cdot 1.8=1.3-1.62=-0.32
\end{aligned}
$$

b. Since $\operatorname{Cov}(X, Y)=-0.32 \neq 0, X$ and Y cannot be independent.
c. Here we go, using the properties of expected value, variance, and covariance:

$$
\begin{aligned}
E(U) & =E(X+3 Y)=E(X)+E(3 Y)=E(X)+3 E(Y)=0.9+3 \cdot 1.8=6.3 \\
V(U) & =V(X+3 Y)=V(X)+V(3 Y)+2 \operatorname{Cov}(X, 3 Y) \\
& =V(X)+3^{2} V(Y)+2 \cdot 3 \operatorname{Cov}(X, 3 Y) \\
& =0.69+9 \cdot 0.56+6 \cdot(-0.32)=0.69+5.04-1.92=3.81
\end{aligned}
$$

$$
[\text { Total }=90]
$$

Part C. Bonus time!

T. Suppose X_{1} and X_{2} each have an exponential distribution with $\lambda=1$. What kind of distribution does $X=X_{1}+X_{2}$ have? (No calculation or proof required, just an answer.) [1]
Solution. The density function of each of X_{1} and X_{2} is $f(x)=\left\{\begin{array}{cc}e^{-x} & x \geq 0 \\ 0 & x<0\end{array}\right.$, from which it follows (see Example 7.4 on pp. 292-293 in the textbook) that the density function of $X=X_{1}+X_{2}$ is $g(x)=\left\{\begin{array}{cc}x e^{-x} & x \geq 0 \\ 0 & x<0\end{array}\right.$. Not itself an exponential distribution, but closely related.

Note: Guessing that $X=X_{1}+X_{2}$ has an exponential distribution earned a half-point.
H. Write a haiku touching on probability or mathematics in general. [1]
haiku?
seventeen in three:
five and seven and five of syllables in lines

[^0]: * The kinds are, in order, $A, K, Q, J, 10,9,8,7,6,5,4,3$, and 2 , and the suits are \odot, \diamond, \& , and

