Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2023 (S62)

Solutions to Assignment \#4
 A Continuous Grind

Suppose X is a continuous random variable whose probability density function is $f(x)=\left\{\begin{array}{cc}x e^{-x} & x \geq 0 \\ 0 & x<0\end{array}\right.$.

1. Verify that $f(x)$ is indeed a valid probability density function. [1.5]

Solution. [We did this in class the other week ...] We check the two conditions a valid probability density function needs to satisfy.

First, we have that $f(x)=0 \geq 0$ when $x<0$ and $f(x)=x e^{-x} \geq 0$ when $x \geq 0$ (since then $x \geq 0$ and $e^{-x}>0$), so $f(x) \geq 0$ for all x, as required.

Second, we will compute the necessary integral with the help of the substitution $w=-x$, so $x=(-1) w$ and $d x=(-1) d w$, changing the limits as we go along: $\begin{array}{ccc}x & 0 & \infty \\ w & 0 & -\infty\end{array}$ Then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{0} 0 d x+\int_{0}^{\infty} x e^{-x} d x=0+\int_{0}^{-\infty}(-1) w e^{w}(-1) d w=\int_{0}^{-\infty} w e^{w} d w
$$

We will now apply integration by parts, with $u=w$ and $v^{\prime}=e^{w}$,
so $u^{\prime}=1$ and $v=e^{w}$.

$$
\begin{aligned}
& =\left.w e^{w}\right|_{0} ^{-\infty}-\int_{0}^{-\infty} 1 e^{w} d w=\left.w e^{w}\right|_{0} ^{-\infty}-\left.e^{w}\right|_{0} ^{-\infty} \\
& =\left[-\infty e^{-\infty}-0 e^{0}\right]-\left[e^{-\infty}-e^{0}\right]=\left[-\frac{\infty}{e^{\infty}}-0\right]-[0-1] \\
& =[0-0]-[0-1]=1, \text { as required. }
\end{aligned}
$$

Since both of the necessary conditions for being a valid probability density function are satisfied, $f(x)$ really is one.
2. Compute the expected value $E(X)$ of X. [1.5]

Solution. We'll use the same substitution used above. The expected value of a random variable X with density function $f(x)$ is, by definition:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{0} x \cdot 0 d x+\int_{0}^{\infty} x \cdot x e^{-x} d x=\int_{-\infty}^{0} 0 d x+\int_{0}^{\infty} x^{2} e^{-x} d x \\
& =0+\int_{0}^{\infty} x^{2} e^{-x} d x=\int_{0}-\infty(-w)^{2} e^{w}(-1) d w=\int_{-\infty}^{0} w^{2} e^{w} d w
\end{aligned}
$$

Integration by parts again, with $u=w^{2}$ and $v^{\prime}=e^{w}$, so $u^{\prime}=2 w$ and $v=e^{w}$.

$$
\begin{aligned}
& =\left.w^{2} e^{w}\right|_{-\infty} ^{0}-\int_{-\infty}^{0} 2 w e^{w} d w=\left[0^{2} e^{0}-(-\infty)^{2} e^{-\infty}\right]-2 \int_{-\infty}^{0} w e^{w} d w \\
& =\left[0-\frac{\infty^{2}}{e^{\infty}}\right]-2(-1) \int_{0}^{-\infty} w e^{w} d w=[0-0]+2 \int_{0}^{-\infty} w e^{w} d w=2 \cdot 1=2
\end{aligned}
$$

Note that we know from the solution to question 1 that $\int_{0}^{-\infty} w e^{w} d w=1$, so there was no need to work it out again.

Thus the expected value of the random variable X is $E(X)=2$.
3. Compute the variance $V(X)=E\left(X^{2}\right)-[E(X)]^{2}$ of X. [2]

Solution. We first need to compute $E\left(X^{2}\right)$; we'll use the same substitution used above one more time.

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{-\infty}^{0} x^{2} \cdot 0 d x+\int_{0}^{\infty} x^{2} \cdot x e^{-x} d x=\int_{-\infty}^{0} 0 d x+\int_{0}^{\infty} x^{3} e^{-x} d x \\
& =0+\int_{0}^{\infty} x^{3} e^{-x} d x=\int_{0}^{-\infty}(-w)^{3} e^{w}(-1) d w=\int_{0}^{-\infty} w^{3} e^{w} d w
\end{aligned}
$$

Integration by parts, now with $u=w^{3}$ and $v^{\prime}=e^{w}$, so $u^{\prime}=3 w^{2}$ and $v=e^{w}$.

$$
\begin{aligned}
& =\left.w^{3} e^{w}\right|_{0} ^{-\infty}-\int_{0}^{-\infty} 3 w^{2} e^{w} d w=\left[(-\infty)^{3} e^{-\infty}-0^{3} e^{0}\right]-3 \int_{0}^{-\infty} w^{2} e^{w} d w \\
& =\left[-\frac{\infty^{3}}{e^{\infty}}-0\right]-3 \cdot(-1) \int_{-\infty}^{0} w^{2} e^{w} d w=[0-0]+3 \int_{-\infty}^{0} w^{2} e^{w} d w=3 \cdot 2=6
\end{aligned}
$$

Note that we know from the solution to question 2 that $\int_{-\infty}^{0} w^{2} e^{w} d w=2$, so there was no need to work it out again.

Finally, we also know from 2 that $E(X)=2$. Thus the variance of the random variable X is $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=6-2^{2}=6-4=2$.

