
Chapter 1

Discrete Probability
Distributions

1.1 Simulation of Discrete Probabilities

1. As n increases, the proportion of heads gets closer to 1/2, but the difference
between the number of heads and half the number of flips tends to increase
(although it will occasionally be 0).

3. (b) If one simulates a sufficiently large number of rolls, one should be able
to conclude that the gamblers were correct.

5. The smallest n should be about 150.

7. The graph of winnings for betting on a color is much smoother (i.e. has
smaller fluctuations) than the graph for betting on a number.

9. Each time you win, you either win an amount that you have already lost or
one of the original numbers 1, 2, 3, 4, and hence your net winning is just
the sum of these four numbers. This is not a foolproof system, since you
may reach a point where you have to bet more money than you have. If
you and the bank had unlimited resources it would be foolproof.

11. For two tosses, the probabilities that Peter wins 0 and 2 are 1/2 and 1/4,
respectively. For four tosses, the probabilities that Peter wins 0, 2, and 4
are 3/8, 1/4, and 1/16, respectively.

13. Your simulation should result in about 25 days in a year having more than
60 percent boys in the large hospital and about 55 days in a year having
more than 60 percent boys in the small hospital.

15. In about 25 percent of the games the player will have a streak of five.
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1.2 Discrete Probability Distributions

1. P ({a, b, c}) = 1 P ({a}) = 1/2

P ({a, b}) = 5/6 P ({b}) = 1/3

P ({b, c}) = 1/2 P ({c}) = 1/6

P ({a, c}) = 2/3 P (φ) = 0

3. (b), (d)

5. (a) 1/2

(b) 1/4

(c) 3/8

(d) 7/8

7. 11/12

9. 3/4, 1

11. 1 : 12, 1 : 3, 1 : 35

13. 11:4

15. Let the sample space be:

ω1 = {A,A} ω4 = {B,A} ω7 = {C,A}

ω2 = {A,B} ω5 = {B,B} ω8 = {C,B}

ω3 = {A,C} ω6 = {B,C} ω9 = {C,C}

where the first grade is John’s and the second is Mary’s. You are given that

P (ω4) + P (ω5) + P (ω6) = .3,

P (ω2) + P (ω5) + P (ω8) = .4,

P (ω5) + P (ω6) + P (ω8) = .1.

Adding the first two equations and subtracting the third, we obtain the desired
probability as

P (ω2) + P (ω4) + P (ω5) = .6.
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17. The sample space for a sequence of m experiments is the set of m-tuples of
S’s and F ’s, where S represents a success and F a failure. The probability
assigned to a sample point with k successes and m− k failures is( 1

n

)k(n− 1
n

)m−k

.

(a) Let k = 0 in the above expression.

(b) If m = n log 2, then

lim
n→∞

(
1− 1

n

)m

= lim
n→∞

((
1− 1

n

)n
)log 2

=
(

lim
n→∞

(
(
1− 1

n

)n
)log 2

=
(
e−1
)log 2

=
1
2

.

(c) Probably, since 6 log 2 ≈ 4.159 and 36 log 2 ≈ 24.953.

19. The left-side is the sum of the probabilities of all elements in one of the three
sets. For the right side, if an outcome is in all three sets its probability
is added three times, then subtracted three times, then added once, so in
the final sum it is counted just once. An element that is in exactly two
sets is added twice, then subtracted once, and so it is counted correctly.
Finally, an element in exactly one set is counted only once by the right
side.

21. 7/212

23. We have
∞∑

n=0

m(ωn) =
∞∑

n=0

r(1− r)n =
r

1− (1− r)
= 1 .

25. They call it a fallacy because if the subjects are thinking about probabilities
they should realize that

P (Linda is bank teller and in feminist movement) ≤ P (Linda is bank teller).

One explanation is that the subjects are not thinking about probability
as a measure of likelihood. For another explanation see Exercise 53 of
Section 4.1.
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27.

Px = P (male lives to age x) =
number of male survivors at age x

100, 000
.

Qx = P (female lives to age x) =
number of female survivors at age x

100, 000
.

29. (Solution by Richard Beigel)

(a) In order to emerge from the interchange going west, the car must go straight
at the first point of decision, then make 4n + 1 right turns, and finally go
straight a second time. The probability P (r) of this occurring is

P (r) =
∞∑

n=0

(1− r)2r4n+1 =
r(1− r)2

1− r4
=

1
1 + r2

− 1
1 + r

,

if 0 ≤ r < 1, but P (1) = 0. So P (1/2) = 2/15.

(b) Using standard methods from calculus, one can show that P (r) attains a
maximum at the value

r =
1 +

√
5

2
−

√
1 +

√
5

2
≈ .346 .

At this value of r, P (r) ≈ .15.

31. (a) Assuming that the students did not actually have a flat tire and that
each student gives any given tire as an answer with probability 1/4, then
probability that they both give the same answer is 1/4. If the students
actually had a flat tire, then the probability is 1 that they both give the
same answer. So, if the probability that they actually had a flat tire is p,
then the probability that they both give the same answer is

1
4
(1− p) + p =

1
4

+
3
4
p .

(b) In this case, they will both answer ‘right front’ with probability (.58)2, etc.
Thus, the probability that they both give the same answer is 39.8%.



Chapter 2

Continuous Probability
Distributions

2.1 Simulation of Continuous Probabilities

The problems in this section are all computer programs.

2.2 Continuous Density Functions

1. (a) f(ω) = 1/8 on [2, 10]

(b) P ([a, b]) = b−a
8 .

3. (a) C = 1
log 5 ≈ .621

(b) P ([a, b]) = (.621) log(b/a)

(c)

P (x > 5) =
log 2
log 5

≈ .431

P (x < 7) =
log(7/2)

log 5
≈ .778

P (x2 − 12x + 35 > 0) =
log(25/7)

log 5
≈ .791 .

5. (a) 1− 1
e1 ≈ .632
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(b) 1− 1
e3 ≈ .950

(c) 1− 1
e1 ≈ .632

(d) 1

7. (a) 1/3, (b) 1/2, (c) 1/2, (d) 1/3

13. 2 log 2− 1.

15. Yes.



Chapter 3

Combinatorics

3.1 Permutations

1. 24

3. 232

5. 9, 6.

7.
5!
55

.

11.
3n− 2

n3
,

7
27

,
28

1000
.

13. (a) 263 × 103

(b)
(
6
3

)
× 263 × 103

15.

(
3
1

)
× (2n − 2)

3n
.

17. 1− 12 · 11 · . . . · (12− n + 1)
12n

, if n ≤ 12, and 1, if n > 12.

21. They are the same.

23. (a)
1
n

,
1
n

(b) She will get the best candidate if the second best candidate is in the first
half and the best candidate is in the secon half. The probability that this
happens is greater than 1/4.
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3.2 Combinatorics

1. (a) 20

(b) .0064

(c) 21

(d) 1

(e) .0256

(f) 15

(g) 10

(h) 0.04668

3.
(

9
7

)
= 36

5. .998, .965, .729

7.

b(n, p, j)
b(n, p, j − 1)

=

(
n

j

)
pjqn−j(

n

j − 1

)
pj−1qn−j+1

=
n!

j!(n− j)!
(n− j + 1)!(j − 1)!

n!
p

q

=
(n− j + 1)

j

p

q

But
(n− j + 1)

j

p

q
≥ 1 if and only if j ≤ p(n + 1), and so j = [p(n + 1)] gives

b(n, p, j) its largest value. If p(n + 1) is an integer there will be two
possible values of j, namely j = p(n + 1) and j = p(n + 1)− 1.

9. n = 15, r = 7

11. Eight pieces of each kind of pie.

13. The number of subsets of 2n objects of size j is
(

2n

j

)
.(

2n

i

)
(

2n

i− 1

) =
2n− i + 1

i
≥ 1 ⇒ i ≤ n +

1
2
.
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Thus i = n makes
(

2n

i

)
maximum.

15. .343, .441, .189, .027.

17. There are
(
n
a

)
ways of putting a different objects into the 1st box, and then(

n−a
b

)
ways of putting b different objects into the 2nd and then one way

to put the remaining objects into the 3rd box. Thus the total number of
ways is (

n

a

)(
n− a

b

)
=

n!
a!b!(n− a− b)!

.

19. (a)

(
4
1

)(
13
10

)
(

52
10

) = 7.23× 10−8.

(b)

(
4
1

)(
3
2

)(
13
4

)(
13
3

)(
13
3

)
(

52
10

) = .044.

(c)
4!
(

13
4

)(
13
3

)(
13
2

)(
13
1

)
(

52
10

) = .315.

21. 3(25) − 3 = 93 (we subtract 3 because the three pure colors are each
counted twice).

23. To make the boxes, you need n + 1 bars, 2 on the ends and n − 1 for the
divisions. The n− 1 bars and the r objects occupy n− 1 + r places. You
can choose any n − 1 of these n − 1 + r places for the bars and use the
remaining r places for the objects. Thus the number of ways this can be
done is (

n− 1 + r

n− 1

)
=
(

n− 1 + r

r

)
.

25. (a) 6!
(

10
6

)
/106 ≈ .1512

(b)
(

10
6

)
/

(
15
6

)
≈ .042
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27. Ask John to make 42 trials and if he gets 27 or more correct accept his
claim. Then the probability of a type I error is

∑
k≥27

b(42, .5, k) = .044,

and the probability of a type II error is

1−
∑
k≥27

b(42, .75, k) = .042.

29. b(n, p,m) =
(

n

m

)
pm(1− p)n−m. Taking the derivative with respect to p

and setting this equal to 0 we obtain m(1−p) = p(n−m) and so p = m/n.

31. .999996.

33. By Stirling’s formula,

(
2n

n

)2

(
4n

2n

) =
(2n!)2(2n!)2

n!4(4n)!
∼ (

√
4πn(2n)2ne−2n)4

(
√

2πn(nn)e−n)4
√

2π(4n)(4n)4ne−4n
=

√
2

πn
.

35. Consider an urn with n red balls and n blue balls inside. The left side of
the identity

(
2n

n

)
=

n∑
j=0

(
n

j

)2

=
n∑

j=0

(
n

j

)(
n

n− j

)

counts the number of ways to choose n balls out of the 2n balls in the urn.
The right hand counts the same thing but breaks the counting into the
sum of the cases where there are exactly j red balls and n− j blue balls.
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39.

b(2n,
1
2
, n) = 2−2n 2n!

n!n!
=

2n(2n− 1) · · · 2 · 1
2n · 2(n− 1) · · · 2 · 2n · 2(n− 1) · · · 2

=
(2n− 1)(2n− 3) · · · 1

2n(2n− 2) · · · 2
.

3.3 Card Shuffling

3. (a) 96.99%

(b) 55.16%
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Chapter 4

Conditional Probability

4.1 Discrete Conditional Probability

3. (a) 1/2

(b) 2/3

(c) 0

(d) 1/4

5. (a) (1) and (2)

(b) (1)

7. (a) We have

P (A ∩B) = P (A ∩ C) = P (B ∩ C) =
1
4

,

P (A)P (B) = P (A)P (C) = P (B)P (C) =
1
4

,

P (A ∩B ∩ C) =
1
4
6= P (A)P (B)P (C) =

1
8

.

(b) We have

P (A ∩ C) = P (A)P (C) =
1
4

,

so C and A are independent,

P (C ∩B) = P (B)P (C) =
1
4

,

so C and B are independent,

P (C ∩ (A ∩B)) =
1
4
6= P (C)P (A ∩B) =

1
8

,

13
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so C and A ∩B are not independent.

9. (a) 1/3

(b) 1/2

13. 1/2

15. (a)

(
48
11

)(
4
2

)
(

52
13

)
−
(

48
13

)≈ .307 .

(b)

(
48
11

)(
3
1

)
(

51
12

) ≈ .427 .

17.

(a)

P (A ∩ B̃) = P (A)− P (A ∩B)
= P (A)− P (A)P (B)
= P (A)(1− P (B))
= P (A)P (B̃) .

(b) Use (a), replacing A by B̃ and B by A.

19. .273.

21. No.

23. Put one white ball in one urn and all the rest in the other urn. This gives
a probability of nearly 3/4, in particular greater than 1/2, for obtaining
a white ball which is what you would have with an equal number of balls
in each urn. Thus the best choice must have more white balls in one urn
than the other. In the urn with more white balls, the best we can do is
to have probability 1 of getting a white ball if this urn is chosen. In the
urn with less white balls than black, the best we can do is to have one less
white ball than black and then to have as many white balls as possible.
Our solution is thus best for the urn with more white balls than black and
also for the urn with more black balls than white. Therefore our solution
is the best we can do.



4.1. DISCRETE CONDITIONAL PROBABILITY 15

25. We must have

p

(
n

j

)
pkqn−k = p

(
n− 1
k − 1

)
pk−1qn−k .

This will be true if and only if np = k. Thus p must equal k/n.

27.

(a) P (Pickwick has no umbrella, given that it rains)=
2
9

.

(b) P (Pickwick brings his umbrella, given that it doesn’t rain)=
5
9

.

Note that the statement in part (b) of this problem was changed in the
errata list for the book.

29.
P (Accepted by Dartmouth | Accepted by Harvard) =

2
3

.

The events ‘Accepted by Dartmouth’ and ‘Accepted by Harvard’ are not
independent.

31. The probability of a 60 year old male living to 80 is .41, and for a female
it is .62.

33. You have to make a lot of calculations, all of which are like this:

P (Ã1 ∩A2 ∩A3) = P (A2)P (A3)− P (A1)P (A2)P (A3)
= P (A2)P (A3)(1− P (A1))
= P (Ã1)P (A2)P (A3).

35. The random variables X1 and X2 have the same distributions, and in each
case the range values are the integers between 1 and 10. The probability
for each value is 1/10. They are independent. If the first number is not
replaced, the two distributions are the same as before but the two random
variables are not independent.

37.

P (max(X, Y ) = a) = P (X = a, Y ≤ a) + P (X ≤ a, Y = a)− P (X = a, Y = a).
P (min(X, Y ) = a) = P (X = a, Y > a) + P (X > a, Y = a) + P (X = a, Y = a).

Thus P (max(X, Y ) = a) + P (min(X, Y ) = a) = P (X = a) + P (Y = a)

and so u = t + s− r.

39. (a) 1/9
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(b) 1/4

(c) No

(d) p
Z

=
(
−2 −1 0 1 2 4
1
6

1
6

1
6

1
6

1
6

1
6

)
43. .710.

45.

(a) The probability that the first player wins under either service convention
is equal to the probability that if a coin has probability p of coming up
heads, and the coin is tossed 2N + 1 times, then it comes up heads more
often than tails. This probability is clearly greater than .5 if and only if
p > .5.

(b) If the first team is serving on a given play, it will win the next point if and
only if one of the following sequences of plays occurs (where ‘W’ means
that the team that is serving wins the play, and ‘L’ means that the team
that is serving loses the play):

W, LLW, LLLLW, . . . .

The probability that this happens is equal to

p + q2p + q4p + . . . ,

which equals
p

1− q2
=

1
1 + q

.

Now, consider the game where a ‘new play’ is defined to be a sequence of
plays that ends with a point being scored. Then the service convention
is that at the beginning of a new play, the team that won the last new
play serves. This is the same convention as the second convention in the
preceding problem.

From part a), we know that the first team to serve under the second service
convention will win the game more than half the time if and only if p > .5.
In the present case, we use the new value of p, which is 1/(1 + q). This is
easily seen to be greater than .5 as long as q < 1. Thus, as long as p > 0,
the first team to serve will win the game more than half the time.

47. (a)

P (Y1 = r, Y2 = s) = P (Φ1(X1) = r, Φ2(X2) = s)
=

∑
Φ1(a)=r

Φ2(b)=s

P (X1 = a,X2 = b) .
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(b) If X1, X2 are independent, then

P (Y1 = r, Y2 = s) =
∑

Φ1(a)=r

Φ2(b)=s

P (X1 = a,X2 = b)

=
∑

Φ1(a)=r

Φ2(b)=s

P (X1 = a)P (X2 = b)

=
( ∑

Φ1(a)=r

P (X1 = a)
)( ∑

Φ2(b)=s

P (X2 = b)
)

= P (Φ1(X1) = r)P (Φ2(X2) = s)
= P (Y1 = r)P (Y2 = s) ,

so Y1 and Y2 are independent.

49. P (both coins turn up using (a)) = 1
2p2

1 + 1
2p2

2.

P (both coins turn up heads using (b)) = p1p2.

Since (p1 − p2)2 = p2
1 − 2p1p2 + p2

2 > 0, we see that p1p2 < 1
2p2

1 + 1
2p2

2, and so
(a) is better.

51.

P (A) = P (A|C)P (C) + P (A|C̃)P (C̃)
≥ P (B|C)P (C) + P (B|C̃)P (C̃) = P (B) .

53. We assume that John and Mary sign up for two courses. Their cards are
dropped, one of the cards gets stepped on, and only one course can be read
on this card. Call card I the card that was not stepped on and on which
the registrar can read government 35 and mathematics 23; call card II the
card that was stepped on and on which he can just read mathematics 23.
There are four possibilities for these two cards. They are:

Card I Card II Prob. Cond. Prob.
Mary(gov,math) John(gov, math) .0015 .224
Mary(gov,math) John(other,math) .0025 .373
John(gov,math) Mary(gov,math) .0015 .224
John(gov,math) Mary(other,math) .0012 .179

In the third column we have written the probability that each case will
occur. For example, for the first one we compute the probability that the
students will take the appropriate courses: .5 × .1 × .3 × .2 = .0030 and
then we multiply by 1/2, the probability that it was John’s card that was
stepped on. Now to get the conditional probabilities we must renormalize
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these probabilities so that they add up to one. In this way we obtain the
results in the last column. From this we see that the probability that card
I is Mary’s is .597 and that card I is John’s is .403, so it is more likely that
that the card on which the registrar sees Mathematics 23 and Government
35 is Mary’s.

55.
P (R1) =

4(
52
5

) = 1.54× 10−6.

P (R2 ∩R1) =
4 · 3(

52
5

)(
47
5

) .

Thus
P (R2 | R1) =

3(
47
5

) = 1.96× 10−6.

Since P (R2|R1) > P (R1), a royal flush is attractive.

P (player 2 has a full house) =
13 · 12

(
4
3

)(
4
2

)
(

52
5

) .

P (player 1 has a flush and player 2 has a full house) =

4 · 8 · 7
(

4
3

)(
4
2

)
+ 4 · 8 · 5

(
4
3

)
·
(

3
2

)
+ 4 · 5 · 8 ·

(
3
3

)(
4
2

)
+ 4 · 5 · 4

(
3
3

)(
3
2

)
(

52
5

)(
47
5

) .

Taking the ratio of these last two quantities gives:

P(player 1 has a royal flush | player 2 has a full house) = 1.479× 10−6.

Since this probability is less than the probability that player 1 has a royal flush
(1.54× 10−6), a full house repels a royal flush.

57.

P (B|A) ≤ P (B) and P (B|A) ≥ P (A)
⇔ P (B ∩A) ≤ P (A)P (B) and P (B ∩A) ≥ P (A)P (B)

⇔ P (A ∩B) = P (A)P (B) .
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59. Since A attracts B, P (B|A) > P (A) and

P (B ∩A) > P (A)P (B) ,

and so
P (A)− P (B ∩A) < P (A)− P (A)P (B) .

Therefore,
P (B̃ ∩A) < P (A)P (B̃) ,

P (B̃|A) < P (B̃) ,

and A repels B̃.

61. Assume that A attracts B1, but A does not repel any of the Bj ’s. Then

P (A ∩B1) > P (A)P (B1),

and
P (A ∩Bj) ≥ P (A)P (Bj), 1 ≤ j ≤ n.

Then

P (A) = P (A ∩ Ω)
= P (A ∩ (B1 ∪ . . . ∪Bn))
= P (A ∩B1) + · · ·+ P (A ∩Bn)
> P (A)P (B1) + · · ·+ P (A)P (Bn)
= P (A)

(
P (B1) + · · ·+ P (Bn)

)
= P (A) ,

which is a contradiction.

4.2 Continuous Conditional Probability

1. (a) 2/3

(b) 1/3

(c) 1/2

(d) 1/2

3. (a) .01

(b) e−.01 T where T is the time after 20 hours.
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(c) e−.2 ≈ .819

(d) 1− e−.01 ≈ .010

5. (a) 1

(b) 1

(c) 1/2

(d) π/8

(e) 1/2

7. P (X >
1
3
, Y >

2
3
) =

∫ 1

1
3

∫ 1

2
3

dydx =
2
9

.

But P (X >
1
3
)P (Y >

2
3
) =

2
3
· 1
3

, so X and Y are independent.

11. If you have drawn n times (total number of balls in the urn is now n +
2) and gotten j black balls, (total number of black balls is now j + 1),
then the probability of getting a black ball next time is (j + 1)/(n + 2).
Thus at each time the conditional probability for the next outcome is the
same in the two models. This means that the models are determined by
the same probability distribution, so either model can be used in making
predictions. Now in the coin model, it is clear that the proportion of
heads will tend to the unknown bias p in the long run. Since the value
of p was assumed to be unformly distributed, this limiting value has a
random value between 0 and 1. Since this is true in the coin model, it
is also true in the Polya Urn model for the proportion of black balls.(See
Exercise 20 of Section 4.1.)

4.3 Paradoxes

1. 2/3

3. (a) Consider a tree where the first branching corresponds to the number of
aces held by the player, and the second branching corresponds to whether
the player answers ‘ace of hearts’ or anything else, when asked to name
an ace in his hand. Then there are four branches, corresponding to the
numbers 1, 2, 3, and 4, and each of these except the first splits into
two branches. Thus, there are seven paths in this tree, four of which
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correspond to the answer ‘ace of hearts.’ The conditional probability that
he has a second ace, given that he has answered ‘ace of hearts,’ is therefore(((

48
12

)
+

1
2

(
3
1

)(
48
11

)
+

1
3

(
3
2

)(
48
10

)
+

1
4

(
3
3

)(
48
9

))/(52
13

))
((

51
12

)/(52
13

)) ≈ .6962 .

(b) This answer is the same as the second answer in Exercise 2, namely .5612.

5.Let x = 2k. It is easy to check that if k ≥ 1, then

px/2

px/2 + px
=

3
4

.

If x = 1, then
px/2

px/2 + px
= 0 .

Thus, you should switch if and only if your envelope contains 1.
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Chapter 5

Important Distributions
and Densities

5.1 Important Distributions

1. (a), (c), (d)

3. Assume that X is uniformly distributed, and let the countable set of values
be {ω1, ω2, . . .}. Let p be the probability assigned to each outcome by the
distribution function f of X. If p > 0, then

∞∑
i=1

f(ωi) =
∞∑

i=1

p ,

and this last sum does not converge. If p = 0, then
∞∑

i=1

f(ωi) = 0 .

So, in both cases, we arrive at a contradiction, since for a distribution
function, we must have

∞∑
i=1

f(ωi) = 1 .

5. (b) Ask the Registrar to sort by using the sixth, seventh, and ninth digits
in the Social Security numbers.

(c) Shuffle the cards 20 times and then take the top 100 cards. (Can you think
of a method of shuffling 3000 cards?

7. (a) p(n) =
1
6

(5
6

)n−1

23
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(b) P (T > 3) = (
5
6
)3 =

125
216

.

(c) P (T > 6 | T > 3) = (
5
6
)3 =

125
216

.

9. (a) 1000

(b)

(
100
10

)(
N−100

90

)(
N
100

)
(c) N = 999 or N = 1000

13. .7408, .2222, .0370

17. 649741

19. The probability of at least one call in a given day with n hands of bridge
can be estimated by 1−e−n·(6.3×10−12). To have an average of one per year
we would want this to be equal to 1

365 . This would require that n be about
400,000,000 and that the players play on the average 8,700 hands a day.
Very unlikely! It’s much more likely that someone is playing a practical
joke.

21. (a) b(32, j, 1/80) =
(

32
j

)( 1
80

)j(79
80

)32−j

(b) Use λ = 32/80 = 2/5. The approximate probability that a given student
is called on j times is e−2/5(2/5)j/j! . Thus, the approximate probability
that a given student is called on more than twice is

1− e−2/5

(
(2/5)0

0!
+

(2/5)1

1!
+

(2/5)2

2!

)
≈ .0079 .

23.

P (outcome is j + 1)/P(outcome is j) =
mj+1e−m

(j + 1)!

/mje−m

j!
=

m

j + 1
.

Thus when j + 1 ≤ m, the probability is increasing, and when j + 1 ≥ m
it is decreasing. Therefore, j = m is a maximum value. If m is an integer,
then the ratio will be one for j = m−1, and so both j = m−1 and j = m
will be maximum values. (cf. Exercise 7 of Chapter 3, Section 2)

25. Using the Poisson approximation, we find that without paying the meter
Prosser pays

2
52e−5

2!
+ (2 + 5)

53e−5

3!
+ · · ·+ (2 + 5 ∗ 98)

5100e−5

100!
= $17.155.
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If one computes the exact value, using the binomial distribution, one finds
the sum to be finds the answer to be

2
(

100
2

)
(.05)2(.95)98+7

(
100
3

)
(.05)3(.95)97+. . .+(2+5∗98)

(
100
100

)
(.05)100(.95)0 = $17.141 .

He is better off putting a dime in the meter each time for a total cost of
$10.

26.

number observed expected

0 229 227
1 211 211
2 93 99
3 35 31
4 7 9
5 1 1

27. m = 100× (.001) = .1. Thus P (at least one accident) = 1− e−.1 = .0952.

29. Here m = 500× (1/500) = 1, and so P (at least one fake) = 1−e−1 = .632.

If the king tests two coins from each of 250 boxes, then m =250× 2
500

= 1,
and so the answer is again .632.

31.The expected number of deaths per corps per year is

1 · 91
280

+ 2 · 32
280

+ 3 · 11
280

+ 4 · 2
280

= .70.

The expected number of corps with x deaths would then be 280· (.70)xe−(.70)

x!
.

From this we obtain the following comparison:

Number of deaths Corps with x deaths Expected number of corps

0 144 139.0
1 91 97.3

The fit is quite good.

33. Poisson with mean 3.

35.

(a) In order to have d defective items in s items, you must choose d items out
of D defective ones and the rest from S−D good ones. The total number
of sample points is the number of ways to choose s out of S.
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(b) Since
min(D,s)∑

j=0

P (X = j) = 1,

we get
min(D,s)∑

j=0

(
D

j

)(
s−D

s− j

)
=
(

S

s

)
.

37. The maximum likelihood principle gives an estimate of 1250 moose.

43. If the traits were independent, then the probability that we would obtain
a data set that differs from the expected data set by as much as the
actual data set differs is approximately .00151. Thus, we should reject the
hypothesis that the two traits are independent.

5.2 Important Densities

1. (a) f(x) = 1 on [2, 3];F (x) = x− 2 on [2, 3].

(b) f(x) =
1
3
x−2/3 on [0, 1]; F (x) = x1/3 on [0, 1].

5. (a) F (x) = 2x , f(x) = 2 on [0, 1] .

(b) F (x) = 2
√

x , f(x) =
1√
x

on [0,
1
2
] .

7. Using Corollary 5.2, we see that the expression
√

rnd will simulate the given
random variable.

9. (a) F (y) =

{
y2

2 , 0 ≤ y ≤ 1;

1− (2−y)2

2 , 1 ≤ y ≤ 2,
f(y) =

{
y, 0 ≤ y ≤ 1;
2− y 1 ≤ y ≤ 2.

(b) F (y) = 2y − y2, f(y) = 2− 2y, 0 ≤ y ≤ 1.

13. (a) F (r) =
√

r , f(r) =
1

2
√

r
, on [0, 1] .

(b) F (s) = 1−
√

1− 4s , f(s) =
2√

1− 4x
, on [0, 1/4] .

(c) F (t) =
t

1 + t
, f(t) =

1
(1 + t)2

, on [0,∞) .
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15. F (d) = 1− (1− 2d)2, f(d) = 4(1− 2d) on [0, 1
2 ].

17. (a) f(x) =
{

π
2 sin(πx), 0 ≤ x ≤ 1;
0, otherwise.

(b) sin2(π
8 ) = .146.

19. a 6= 0 : f
W

(w) = 1
|a|fX

(w−b
a ), a = 0: f

W
(w) = 0 if w 6= 0.

21. P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y on [0, 1].

23. The mean of the uniform density is (a + b)/2. The mean of the normal
density is µ. The mean of the exponential density is 1/λ.

25. (a) .9773, (b) .159, (c) .0228, (d) .6827.

27. A: 15.9%, B: 34.13%, C: 34.13%, D: 13.59%, F: 2.28%.

29. e−2, e−2.

31. 1
2 .

35. P (size increases) = P (Xj < Yj) = λ/(λ + µ).

P (size decreases) = 1− P (size increases) = µ/(λ + µ).

37. FY (y) =
1√
2πy

e−
log2(y)

2 , for y > 0.
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Chapter 6

Expected Value and
Variance

6.1 Expected Value of Discrete Random Vari-
ables

1. -1/9

3. 5′ 10.1”

5. -1/19

7. Since X and Y each take on only two values, we may choose a, b, c, d so that

U =
X + a

b
, V =

Y + c

d

take only values 0 and 1. If E(XY ) = E(X)E(Y ) then E(UV ) =
E(U)E(V ). If U and V are independent, so are X and Y . Thus it is
sufficient to prove independence for U and V taking on values 0 and 1
with E(UV ) = E(U)E(V ). Now

E(UV ) = P (U = 1, V = 1) = E(U)E(V ) = P (U = 1)P (V = 1),

and

P (U = 1, V = 0) = P (U = 1)− P (U = 1, V = 1)
= P (U = 1)(1− P (V = 1)) = P (U = 1)P (V = 0).

Similarly,

P (U = 0, V = 1) = P (U = 0)P (V = 1)
P (U = 0, V = 0) = P (U = 0)P (V = 0).

29
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Thus U and V are independent, and hence X and Y are also.

9. The second bet is a fair bet so has expected winning 0. Thus your ex-
pected winning for the two bets is the same as the original bet which
was −7/498 = −.0141414... . On the other hand, you bet 1 dollar with
probability 1/3 and 2 dollars with probability 2/3. Thus the expected
amount you bet is 1 2

3 dollars and your expected winning per dollar bet
is -.0141414/1.666667 = -.0085 which makes this option a better bet in
terms of the amount won per dollar bet. However, the amount of time to
make the second bet is negligible, so in terms of the expected winning per
time to make one play the answer would still be -.0141414.

11. The roller has expected winning -.0141; the pass bettor has expected
winning -.0136.

13. 45

15. E(X) = 1
5 , so this is a favorable game.

17. pk = p(

k−1 times︷ ︸︸ ︷
S · · ·S F ) = pk−1(1− p) = pk−1q, k = 1, 2, 3, . . . .

∞∑
k=1

pk = q
∞∑

k=0

pk = q
1

1− p
= 1 .

E(X) = q
∞∑

k=1

kpk−1 =
q

(1− p)2
=

1
q

. (See Example 6.4.)

19.

E(X) =

(
4
4

)(
4
4

) (3− 3) +

(
3
2

)(
4
3

) (3− 2) +

(
3
3

)(
4
3

) (0− 3) +

(
3
1

)(
4
2

) (3− 1)

+

(
3
2

)(
4
2

) (0− 2) +

(
3
0

)(
4
1

) (3− 0) +

(
3
1

)(
4
1

) (0− 1) = 0 .

23. 10

25.

(b) Let S be the number of stars and C the number of circles left in the deck.
Guess star if S > C and guess circle if S < C. If S = C toss a coin.

(d) Consider the recursion relation:

h(S, C) =
max(S, C)

S + C
+

S

S + C
h(S − 1, C) +

C

S + C
h(S, C − 1)
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and h(0, 0) = h(−1, 0) = h(0,−1) = 0. In this equation the first term
represents your expected winning on the current guess and the next two
terms represent your expected total winning on the remaining guesses.
The value of h(10, 10) is 12.34.

27. (a) 4

(b) 4 +
4∑

x=1

(
4
x

)(
4
x

)(
8
x

) = 5.79 .

29. If you have no ten-cards and the dealer has an ace, then in the remaining 49
cards there are 16 ten cards. Thus the expected payoff of your insurance
bet is:

2 · 16
49
− 1 · 33

49
= − 1

49
.

If you are playing two hands and do not have any ten-cards then there
are 16 ten-cards in the remaining 47 cards and your expected payoff on
an insurance bet is:

2 · 16
47
− 1 · 31

47
=

1
47

.

Thus in the first case the insurance bet is unfavorable and in the second
it is favorable.

31. (a) 1− (1− p)k .

(b)
N

k
·
(
(k + 1)(1− (1− p)k) + (1− p)k

)
.

(c) If p is small, then (1− p)k ∼ 1− kp, so the expected number in (b) is
∼ N [kp + 1

k ], which will be minimized when k = 1/
√

p.

33. We begin by noting that

P (X ≥ j + 1) = P ((t1 + t2 + · · ·+ tj) ≤ n) .

Now consider the j numbers a1, a2, · · · , aj defined by

a1 = t1
a2 = t1 + t2
a3 = t1 + t2 + t3

...
...

...
aj = t1 + t2 + · · ·+ tj .

The sequence a1, a2, · · · , aj is a monotone increasing sequence with distinct
values and with successive differences between 1 and n. There is a one-to-
one correspondence between the set of all such sequences and the set of
possible sequences t1, t2, · · · , tj . Each such possible sequence occurs with
probability 1/nj . In fact, there are n possible values for t1 and hence for



32 CHAPTER 6. EXPECTED VALUE AND VARIANCE

a1. For each of these there are n possible values for a2 corresponding to
the n possible values of t2. Continuing in this way we see that there are
nj possible values for the sequence a1, a2, · · · , aj . On the other hand, in
order to have t1 + t2 + · · · + tj ≤ n the values of a1, a2, · · · , aj must be
distinct numbers lying between 1 to n and arranged in order. The number
of ways that we can do this is

(
n
j

)
. Thus we have

P (t1 + t2 + · · ·+ tj ≤ n) = P (X ≥ j + 1) =
(

n

j

)
1
nj

.

E(X) = P (X = 1) + P (X = 2) + P (X = 3) · · ·
+P (X = 2) + P (X = 3) · · ·

+P (X = 3) · · · .

If we sum this by rows we see that

E(X) =
n−1∑
j=0

P (X ≥ j + 1) .

Thus,

E(X) =
n∑

j=1

(
n

j

)( 1
n

)j

=
(
1 +

1
n

)n

.

The limit of this last expression as n →∞ is e = 2.718... .
There is an interesting connection between this problem and the expo-
nential density discussed in Section 2.2 (Example 2.17). Assume that the
experiment starts at time 1 and the time between occurrences is equally
likely to be any value between 1 and n. You start observing at time n.
Let T be the length of time that you wait. This is the amount by which
t1 + t2 + · · · + tj is greater than n. Now imagine a sequence of plays of
a game in which you pay n/2 dollars for each play and for the j’th play
you receive the reward tj . You play until the first time your total reward
is greater than n. Then X is the number of times you play and your
total reward is n + T . This is a perfectly fair game and your expected net
winning should be 0. But the expected total reward is n + E(T ). Your
expected payment for play is n

2 E(X). Thus by fairness, we have

n + E(T ) = (n/2)E(X) .

Therefore,
E(T ) =

n

2
E(X)− n .

We have seen that for large n, E(X) ∼ e. Thus for large n,

E(waiting time) = E(T ) ∼ n(
e

2
− 1) = .718n .
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Since the average time between occurrences is n/2 we have another exam-
ple of the paradox where we have to wait on the average longer than 1/2
the average time time between occurrences.

35. One can make a conditionally convergent series like the alternating har-
monic series sum to anything one pleases by properly rearranging the
series. For example, for the order given we have

E =
∞∑

n=0

(−1)n+1 2n

n
· 1
2n

=
∞∑

n=0

(−1)n+1 1
n

= log 2 .

But we can rearrange the terms to add up to a negative value by choosing
negative terms until they add up to more than the first positive term, then
choosing this positive term, then more negative terms until they add up
to more than the second positive term, then choosing this positive term,
etc.

37. (a) Under option (a), if red turns up, you win 1 franc, if black turns up,
you lose 1 franc, and if 0 turns up, you lose 1/2 franc. Thus, the expected
winnings are

1
(18

37

)
+ (−1)

(18
37

)
+
(−1

2

)( 1
37

)
≈ −.0135 .

(b) Under option (b), if red turns up, you win 1 franc, if black turns up, you
lose 1 franc, and if 0 comes up, followed by black or 0, you lose 1 franc.
Thus, the expected winnings are

1
(18

37

)
+ (−1)

(18
37

)
+ (−1)

( 1
37

)(19
37

)
≈ −.0139 .

(c)

39. (Solution by Peter Montgomery) The probability that book 1 is in the
right place is the probability that the last phone call referenced book 1,
namely p1. The probability that book 2 is in the right place, given that
book 1 is in the right place, is

p2 + p2p1 + p2p
2
1 + . . . =

p2

(1− p1)
.

Continuing, we find that

P = p1
p2

(1− p1)
p3

(1− p1 − p2)
· · · pn

(1− p1 − p2 − . . .− pn−1
.
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Now let q be a real number between 0 and 1, let

p1 = 1− q ,

p2 = q − q2 ,

and so on, and finally let
pn = qn−1 .

Then
P = (1− q)n−1 ,

so P can be made arbitrarily close to 1.

6.2 Variance of Discrete Random Variables

1. E(X) = 0, V (X) =
2
3
, σ = D(X) =

√
2
3

.

3. E(X) =
−1
19

, E(Y ) =
−1
19

, V (X) = 33.21, V (Y ) = .99 .

5. (a) E(F ) = 62, V (F ) = 1.2 .

(b) E(T ) = 0, V (T ) = 1.2 .

(c) E(C) =
50
3

, V (C) =
10
27

.

7. V (X) =
3
4

, D(X) =
√

3
2

.

9. V (X) =
20
9

, D(X) =
2
√

5
3

.

11. E(X) = (1 + 2 + · · ·+ n)/n = (n + 1)/2.

V (X) = (12 + 22 + · · ·+ n2)/n− (E(X))2

= (n + 1)(2n + 1)/6− (n + 1)2/4 = (n + 1)(n− 1)/12.

13. Let X1, . . . , Xn be identically distributed random variables such that

P (Xi = 1) = P (Xi = −1) =
1
2
.

Then E(Xi) = 0, and V (Xi) = 1. Thus Wn =
∑n

j=1 Xi. Therefore
E(Wn) =

∑n
i=1 E(Xi) = 0, and V (Wn) =

∑n
i=1 V (Xi) = n.
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15. (a) PXi
=
(

0 1
n−1

n
1
n

)
. Therefore, E(Xi)2 = 1/n for i 6= j.

(b) PXiXj
=
(

0 1
1− 1

n(n−1)
1

n(n−1)

)
for i 6= j .

Therefore, E(XiXj) =
1

n(n− 1)
.

(c)

E(Sn)2 =
∑

i

E(Xi)2 +
∑

i

∑
j 6=i

E(XiXj)

= n · 1
n

+ n(n− 1) · 1
n(n− 1)

= 2 .

(d)

V (Sn) = E(Sn)2 − E(Sn)2

= 2− (n · (1/n))2 = 1 .

19. Let X1, X2 be independent random variables with

pX1 = pX2 =
(
−1 1
1
2

1
2

)
.

Then

pX1+X2 =
(
−2 0 2
1
4

1
2

1
4

)
.

Then
σ̄X1 = σ̄X2 = 1, σ̄X1+X2 = 1 .

Therefore
V (X1 + X2) = 1 6= V (X1) + V (X2) = 2 ,

and
σ̄X1+X2 = 1 6= σ̄X1 + σ̄X2 = 2 .

21.

f ′(x) = −
∑
ω

2(X(ω)− x)p(ω)

= −2
∑
ω

X(ω)p(ω) + 2x
∑
ω

p(ω)

= −2µ + 2x .

Thus x = µ is a critical point. Since f ′′(x) ≡ 2, we see that x = µ is the
minimum point.
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23. If X and Y are independent, then

Cov(X, Y ) = E(X − E(X)) · E(Y − E(Y )) = 0 .

Let U have distribution

p
U

=
(

0 π/2 π 3π/2
1/4 1/4 1/4 1/4

)
.

Then let X = cos(U) and Y = sin(U). X and Y have distributions

p
X

=
(

1 0 −1 0
1/4 1/4 1/4 1/4

)
,

p
Y

=
(

0 1 0 −1
1/4 1/4 1/4 1/4

)
.

Thus E(X) = E(Y ) = 0 and E(XY ) = 0, so Cov(X, Y ) = 0. However,
since

sin2(x) + cos2(x) = 1 ,

X and Y are dependent.

25. (a) The expected value of X is

µ = E(X) =
5000∑
i=1

iP (X = i) .

The probability that a white ball is drawn is

P (white ball is drawn) =
n∑

i=1

P (X = i)
i

5000
.

Thus
P (white ball is drawn) =

µ

5000
.

(b) To have P (white,white) = P (white)2 we must have

5000∑
i=1

(
i

5000
)2P (X = i) = (

n∑
i=1

i

5000
P (X = i))2 .

But this would mean that E(X2) = E(X)2, or V (X) = 0. Thus we will
have independence only if X takes on a specific value with probability 1.

(c) From (b) we see that

P (white,white) =
1

50002 E(X2) .

Thus

V (X) =
(σ2 + µ2)

50002
.
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27. The number of boxes needed to get the j’th picture has a geometric
distribution with

p =
(2n− k + 1)

2n
.

Thus

V (Xj) =
2n(k − 1)

(2n− k + 1)2
.

Therefore, for a team of 26 players the variance for the number of boxes
needed to get the first half of the pictures would be

13∑
k=1

26(k − 1)
(26− k + 1)2

= 7.01 ,

and to get the second half would be

26∑
k=14

26(k − 1)
(26− k + 1)2

= 979.23 .

Note that the variance for the second half is much larger than that for the
first half.

6.3 Continuous Random Variables

1. (a) µ = 0, σ2 = 1/3

(b) µ = 0, σ2 = 1/2

(c) µ = 0, σ2 = 3/5

(d) µ = 0, σ2 = 3/5

3. µ = 40, σ2 = 800

5. (d) a = −3/2, b = 0, c = 1

(e) a =
45
48

, b = 0, c =
3
16

7. f(a) = E(X − a)2 =
∫

(x− a)2f(x)dx . Thus

f ′(a) = −
∫

2(x− a)f(x)dx
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= −2
∫

xf(x)dx + 2a

∫
f(x)dx

= −2µ(X) + 2a .

Since f ′′(a) = 2, f(a) achieves its minimum when a = µ(X).

9. (a) 3µ, 3σ2

(b) E(A) = µ, V (A) =
σ2

3

(c) E(S2) = 3σ2 + 9µ2, E(A2) =
σ2

3
+ µ2

11. In the case that X is uniformly distributed on [0, 100], one finds that

E(|X − b|) =
1

200

(
b2 + (100− b)2

)
,

which is minimized when b = 50.

When fX(x) = 2x/10,000, one finds that

E(|X − b|) =
200
3
− b +

b3

15000
,

which is minimized when b = 50
√

2.

13. Integrating by parts, we have

E(X) =
∫ ∞

0

xdF (x)

= −x(1− F (x))
∣∣∞
0

+
∫ ∞

0

(1− F (x))dx

=
∫ ∞

0

(1− F (x))dx .

To justify this argment we have to show that a(1−F (a)) approaches 0 as
a tends to infinity. To see this, we note that∫ ∞

0

xf(x)dx =
∫ a

0

xf(x)dx +
∫ ∞

a

xf(x)dx

≥
∫ a

0

xf(x)dx +
∫ a

0

af(x)dx

=
∫ a

0

xf(x)dx + a(1− F (a)) .

Letting a tend to infinity, we have that

E(X) ≥ E(X) + lim
a→∞

a(1− F (a)) .
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Since both terms are non-negative, the only way this can happen is for
the inequality to be an equality and the limit to be 0.

To illustrate this with the exponential density, we have∫ ∞

0

(1− F (x))dx =
∫ ∞

0

e−λxdx =
1
λ

= E(X) .

15. E(Y ) = 9.5, E(Z) = 10, E(|X − Y |) = 1/2, E(|X − Z|) = 1/4 .

Z is better, since the expected value of the error committed by rounding using
this method is one-half of that using the other method.

17. (a)

Cov(X, Y ) = E(XY )− µ(X)E(Y )− E(X)µ(Y ) + µ(X)µ(Y )
= E(XY )− µ(X)µ(Y ) = E(XY )− E(X)E(Y ) .

(b) If X and Y are independent, then E(XY ) = E(X)E(Y ), and so Cov(X, Y )
= 0.

(c)

V (X + Y ) = E(X + Y )2 − (E(X + Y ))2

= E(X2) + 2E(XY ) + E(Y 2)
−E(X)2 − 2E(X)E(Y )− E(Y )2

= V (X) + V (Y ) + 2Cov(X, Y ) .

19. (a) 0

(b)
1√
2

(c) − 1√
2

(d) 0

21. We have

f
XY (x,y)

f
Y
(y)

=

1

2π
√

1−ρ2
· exp

(
−(x2−2ρxy+y2)

2(1−ρ2)

)
√

2π · exp(−y2

2 )

=
1√

2π(1− ρ2)
· exp

(
−(x− ρy)2

2(1− ρ2)

)
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which is a normal density with mean ρy and variance 1− ρ2. Thus,

E(X|Y = y) =
∫ ∞

−∞
x

1√
2π(1− ρ2)

· exp
(−(x− ρy)2

2(1− ρ2)

)
dx

= ρy

∫ ∞

−∞

1√
2π(1− ρ2)

· exp(−(x− ρy)2)

=
{

ρy < y, if 0 < ρ < 1;
y, if ρ = 1.

27. Let Z represent the payment. Then

P (Z = k|X = x) = P (Y1 ≤ x, Y2 ≤ x, . . . , Yk ≤ x, Yk+1 > x)
= xk(1− x) .

Therefore,

P (Z = k) =
∫ 1

0

xk(1− x) dx

=
[

1
k + 1

xk+1 − 1
k + 2

xk+2

]1
0

=
1

k + 1
− 1

k + 2
=

1
(k + 1)(k + 2)

.

Thus,

E(Z) =
∞∑

k=0

k

(
1

(k + 1)(k + 2)

)
,

which diverges. Thus, you should be willing to pay any amount to play
this game.



Chapter 7

Sums of Independent
Random Variables

7.1 Sums of Discrete Random Variables

1. (a) .625

(b) .5

3.
(

0 1 2 3 4
1
64

3
32

17
64

3
8

1
4

)

5. (a)
(

3 4 5 6
1
12

4
12

4
12

3
12

)

(b)
(

1 2 3 4
1
12

4
12

4
12

3
12

)
7. (a) P (Y3 ≤ j) = P (X1 ≤ j,X2 ≤ j, X3 ≤ j) = P (X1 ≤ j)3.

Thus

p
Y3

=
(

1 2 3 4 5 6
1

216
7

216
19
216

37
216

61
216

91
216

)
.

This distribution is not bell-shaped.

(b) In general,

P (Yn ≤ j) = P (X1 ≤ j)3 =
(

j

6

)n

.

Therefore,

P (Yn = j) =
(

j

6

)n

−
(

j − 1
6

)n

.

This distribution is not bell-shaped for large n.
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9. Let p1, . . . , p6 be the probabilities for one die and q1, . . . , q6 be the proba-
bilities for the other die. Assume first that all probabilities are positive.
Then p1q1 > p1q6, since there is only one way to get a 2 and several ways
to get a 7. Thus q1 > q6. In the same way q6q6 > q1p6 and so q6 > q1.
This is a contradiction. If any of the sides has probability 0, then we can
renumber them so that it is side 1. But then the probability of a 2 is 0
and so all sums would have to have probability 0, which is impossible.

Here’s a fancy way to prove it. Define the polynomials

p(x) =
5∑

k=0

p(k+1)x
k

and

q(x) =
5∑

k=0

q(k+1)x
k .

Then we must have

p(x)q(x) =
10∑

k=0

xk

11
=

(1− x11)
(1− x)

.

The left side is the product of two fifth degree polynomials. A fifth degree
polynomial must have a real root which will not be 0 if p1 > 0. Consider the
right side as a polynomial. For x to be a non-zero root of this polynomial
it would have to be a real eleventh root of unity other than 1, and there
are no such roots. Hence again we have a contradiction.

7.2 Sums of Continuous Random Variables

3. (a)

f
Z
(x) =

{
x3/24, if 0 ≤ x ≤ 2;
x− x3/24− 4/3, if 2 ≤ x ≤ 4.

(b)

f
Z
(x) =

{
(x3 − 18x2 + 108x− 216)/24, if 6 ≤ x ≤ 8;
(−x3 + 18x2 − 84x + 40)/24, if 8 ≤ x ≤ 10.

(c)

f
Z
(x) =

{
x2/8, if 0 ≤ x ≤ 2;
1/2− (x− 2)2/8, if 2 ≤ x ≤ 4.
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5. (a)

f
Z
(x) =

{
λµ

µ+λeλx, x < 0;
λµ

µ+λe−µx, x ≥ 0.

(b)

f
Z
(x) =

{
1− e−λx, 0 < x < 1;
(eλ − 1)e−λx, x ≥ 1.

7. We first find the density for X2 when X has a general normal density

f
X

(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

dx .

Then (see Theorem 1 of Chapter 5, Section 5.2 and the discussion follow-
ing) we have

f2
X

(x) =
1

σ
√

2π

1
2
√

x
exp(−x/2σ2 − µ2/2σ2)

(
exp(

√
xµ/σ2)+exp(−

√
xµ/σ2)

)
.

Replacing the last two exponentials by their series representation, we have

f2
X

(x) = e−µ/2σ2
∞∑

r=0

( µ

2σ2

)r 1
r!

G(1/2σ2, r + 1/2, x) ,

where
G(a, p, x) =

ap

Γ(p)
e−axxp−1

is the gamma density. We now consider the original problem with X1 and X2

two random variables with normal density with parameters µ1, σ1 and
µ2, σ2. This is too much generality for us, and we shall assume that the
variances are equal, and then for simplicity we shall assume they are 1.
Let

c =
√

µ2
1 + µ2

2 .

We introduce the new random variables

Z1 =
1
c
(µ1X1 + µ2X2) ,

Z2 =
1
c
(µ2X1 − µ1X2) .

Then Z1 is normal with mean c and variance 1 and Z2 is normal with
mean 0 and variance 1. Thus,

fZ2
1

= e−c2/2
∞∑

r=0

(c2

2

)r 1
r!

G(1/2, r + 1/2, x) ,
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and
fZ2

2
= G(1/2, 1/2, x) .

Convoluting these two densities and using the fact that the convolution of
a gamma density G(a, p, x) and G(a, q, x) is a gamma density G(a, p+q, x)
we finally obtain

fZ2
1+Z2

2
= fX2

1+X2
2

= e−c2/2
∞∑

r=0

(c2

2

)r 1
r!

G
(
1/2, r + 1, x

)
.

(This derivation is adapted from that of C.R. Rao in his book Advanced
Statistical Methods in Biometric Research, Wiley, l952.)

9. P (X10 > 22) = .341 by numerical integration. This also could be estimated
by simulation.

11. 10 hours

13. Y1 = −log(X1) has an exponential density f
Y1

(x) = e−x. Thus Sn has
the gamma density

f
Sn

(x) =
xn−1e−x

(n− 1)!
.

Therefore
f

Zn
(x) =

1
(n− 1)!

(
log

1
x

)n−1

.

19. The support of X + Y is [a + c, b + d].

21. (a)

f
A
(x) =

1√
2πn

e−x2/(2n) .

(b)
f

A
(x) = nnxne−nx/(n− 1)! .



Chapter 8

Law of Large Numbers

8.1 Law of Large Numbers for Discrete Random
Variables

1. 1/9

3. We shall see that Sn − n/2 tends to infinity as n tends to infinity. While
the difference will be small compared to n/2, it will not tend to 0. On the
other hand the difference Sn/n− 1/2 does tend to 0.

5. k = 10

7.

p(1− p) =
1
4
−
(

1
4
− p + p2

)
=

1
4
− (

1
2
− p)2 ≤ 1

4
.

Thus, max
0≤p≤1

p(1− p) =
1
4
. From Exercise 6 we have that

P

(
|Sn

n
− p| ≥ ε

)
≤ p(1− p)

nε2
≤ 1

4nε2
.

9.

P (Sn ≥ 11) = P (Sn − E(Sn) ≥ 11− E(Sn))
= P (Sn − E(Sn) ≥ 10)

≤ V (Sn)
102

= .01.

45
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11. No, we cannot predict the proportion of heads that should turn up in
the long run, since this will depend upon which of the two coins we pick.
If you have observed a large number of trials then, by the Law of Large
Numbers, the proportion of heads should be near the probability for the
coin that you chose. Thus, in the long run, you will be able to tell which
coin you have from the proportion of heads in your observations. To be 95
percent sure, if the proportion of heads is less than .625, predict p = 1/2;
if it is greater than .625, predict p = 3/4. Then you will get the correct
coin if the proportion of heads does not deviate from the probability of
heads by more than .125. By Exercise 7, the probability of a deviation of
this much is less than or equal to 1/(4n(.125)2). This will be less than or
equal to .05 if n > 320. Thus with 321 tosses we can be 95 percent sure
which coin we have.

15. Take as Ω the set of all sequences of 0’s and 1’s, with 1’s indicating heads
and 0’s indicating tails. We cannot determine a probability distribution by
simply assigning equal weights to all infinite sequences, since these weights
would have to be 0. Instead, we assign probabilities to finite sequences
in the usual way, and then probabilities of events that depend on infinite
sequences can be obtained as limits of these finite sequences. (See Exercise
28 of Chapter 1, Section 1.2.)

17. For x ∈ [0, 1], let us toss a biased coin that comes up heads with
probability x. Then

E
(f(Sn)

n

)
→ f(x).

But

E
(f(Sn)

n

)
=

n∑
k=0

f
(k

n

)(n

k

)
xk(1− x)n−k.

The right side is a polynomial, and the left side tends to f(x). Hence
n∑

k=0

f
(k

n

)(n

k

)
xk(1− x)n−k → f(x).

This shows that we can obtain obtain any continuous function f(x) on
[0,1] as a limit of polynomial functions.

8.2 Law of Large Numbers for Continuous Ran-
dom Variables

1. (a) 1
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(b) 1

(c) 100/243

(d) 1/12

3.
f(x) =

{
1− x/10, if 0 ≤ x ≤ 10;
0 otherwise.

g(x) =
100
3x2

.

5. (a) 1, 1/4, 1/9

(b) 1 vs. .3173, .25 vs. .0455, .11 vs. .0027

7. (b) 1, 1, 100/243, 1/12

9. (a) 0

(b) 7/12

(c) 11/12

11. (a) 0

(b) 7/12

13. (a) 2/3

(b) 2/3

(c) 2/3

17. E(X) =
∫∞
−∞ xp(x)dx. Since X is non-negative, we have

E(X) ≥
∫

x≥a

xp(x)dx ≥ aP (X ≥ a) .
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Chapter 9

Central Limit Theorem

9.1 Central Limit Theorem for Discrete Inde-
pendent Trials

(The answers to the problems in this chapter do not use the ‘1/2 correction’
mentioned in Section 9.1.)

1. (a) .158655

(b) .6318

(c) .0035

(d) .9032

3. (a) P (June passes) ≈ .985

(b) P (April passes) ≈ .056

5. Since his batting average was .267, he must have had 80 hits. The
probability that one would obtain 80 or fewer successes in 300 Bernoulli
trials, with individual probability of success .3, is approximately .115.
Thus, the low average is probably not due to bad luck (but a statistician
would not reject the hypothesis that the player has a probability of success
equal to .3).

7. .322

9. (a) 0

(b) 1 (Law of Large Numbers)

(c) .977 (Central Limit Theorem)

49
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(d) 1 (Law of Large Numbers)

13. P (S1900 ≥ 115) = P

(
S∗1900 ≥

115− 95√
1900 · .05 · .95

)
= P (S∗1900 ≥ 2.105) =

.0176.

17. We want
2
√

pq
√

n
= .01. Replacing

√
pq by its upper bound 1

2 , we have

1√
n

= .01. Thus we would need n = 10,000. Recall that by Chebyshev’s

inequality we would need 50,000.

9.2 Central Limit Theorem for Discrete Inde-
pendent Trials

1. (a) .4762

(b) .0477

3. (a) .5

(b) .9987

5. (a) P (S210 < 700) ≈ .0757.

(b) P (S189 ≥ 700) ≈ .0528

(c)

P (S179 < 700, S210 ≥ 700) = P (S179 < 700)− P (S179 < 700, S210 < 700)
= P (S179 < 700)− P (S210 < 700)
≈ .9993− .0757 = .9236 .

7. (a) Expected value = 200, variance = 2

(b) .9973

9. P
(∣∣∣Sn

n
− µ

∣∣∣ ≥ ε
)

= P
(∣∣∣Sn − nµ

∣∣∣ ≥ nε
)
= P

(∣∣∣Sn − nµ√
nσ2

∣∣∣ ≥ nε√
nσ2

)
.

By the Central Limit Theorem, this probability is approximated by the

area under the normal curve between
√

nε

σ
and infinity, and this area

approaches 0 as n tends to infinity.
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11. Her expected loss is 60 dollars. The probability that she lost no money is
about .0013.

13. p = .0056

9.3 Central Limit Theorem for Continuous In-
dependent Trials

1.

E(X∗) =
1
σ

(E(X)− µ) =
1
σ

(µ− µ) = 0 ,

σ2(X∗) = E
(X − µ

σ

)2

=
1
σ2

σ2 = 1 .

3. Tn = Y1 + Y2 + · · ·+ Yn =
Sn − nµ

σ
. Since each Yj has mean 0 and vari-

ance 1, E(Tn) = 0 and V (Tn) = n. Thus T ∗n =
Tn√

n
=

Sn − nµ

σ
√

n
= S∗n .

11. (a) .5

(b) .148

(c) .018

13. .0013
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Chapter 10

Generating Functions

10.1 Generating Functions for Discrete Distri-
butions

1. In each case, to get g(t) just replace z by et in h(z).

(a) h(z) =
1
2
(1 + z)

(b) h(z) =
1
6

6∑
j=1

zj

(c) h(z) = z3

(d) h(z) =
1

k + 1
zn

k∑
j=0

zj

(e) h(z) = zn(pz + q)k

(f) h(z) =
2

3− z

3. (a) h(z) =
1
4

+
1
2
z +

1
4
z2 .

(b) g(t) = h(et) =
1
4

+
1
2
et +

1
4
e2t .

(c)

g(t) =
1
4

+
1
2

(( ∞∑
k=0

tk

k!

)
+

1
4

( ∞∑
k=0

2k

k!
tk
)

53
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= 1 +
∞∑

k=1

( 1
2k!

+
2k−2

k!

)
tk = 1 +

∞∑
k=1

µk

k!
tk .

Thus µ0 = 1, and µk = 1
2 + 2k−2 for k ≥ 1.

(d) p0 =
1
4
, p1 =

1
2
, p2 =

1
4

.

5. (a) µ1(p) = µ1(p′) = 3, µ2(p) = µ2(p′) = 11

µ3(p) = 43, µ3(p′) = 47

µ4(p) = 171, µ4(p′) = 219

7. (a) g−X(t) = g(−t)

(b) gX+1(t) = etg(t)

(c) g3X(t) = g(3t)

(d) gaX+b = ebtg(at)

9. (a) h
X

(z) =
6∑

j=1

ajz
j , h

Y
(z) =

6∑
j=1

bjz
j .

(b) h
Z
(z) =

( 6∑
j=1

ajz
j
)( 6∑

j=1

bjz
j
)

.

(c) Assume that h
Z
(z) = (z2 + · · ·+ z12)/11 . Then

( 6∑
j=1

ajz
j−1
)( 6∑

j=1

bjz
j−1
)

=
1 + z + · · · z10

11
=

z11 − 1
11(z − 1)

.

Either
6∑

j=1

ajz
j−1or

6∑
j=1

bjz
j−1 is a polynomial of degree 5 (i.e., either a6 6=

0 or b6 6= 0). Suppose that
6∑

j=1

ajz
j−1 is a polynomial of degree 5. Then it

must have a real root, which is a real root of (z11 − 1)/(z − 1). However
(z11 − 1)/(z − 1) has no real roots. This is because the only real root of
z11 − 1 is 1, which cannot be a real root of (z11 − 1)/(z − 1). Thus, we
have a contradiction. This means that you cannot load two dice in such
a way that the probabilities for any sum from 2 to 12 are the same. (cf.
Exercise 11 of Section 7.1).
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10.2 Branching Processes

1. (a) d = 1

(b) d = 1

(c) d = 1

(d) d = 1

(e) d = 1/2

(f) d ≈ .203

3. (a) 0

(b) 276.26

5. Let Z be the number of offspring of a single parent. Then the number of
offspring after two generations is

SN = X1 + · · ·+ XN ,

where N = Z and Xi are independent with generating function f . Thus by
Exercise 4, the generating function after two generations is h(z) = f(f(z)).

7. If there are k offspring in the first generation, then the expected total
number of offspring will be kN , where N is the expected total numer for
a single offspring. Thus we can compute the expected total number by
counting the first offspring and then the expected number after the first
generation. This gives the formula

N = 1 +
(∑

k

kpk

)
= 1 + mN .

From this it follows that N is finite if and only if m < 1, in which case

N = 1/(1−m).

10.3 Generating Functions for Continuous Den-
sities

1. (a) g(t) =
1
2t

(e2t − 1)
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(b) g(t) =
e2t(2t− 1) + 1

2t2

(c) g(t) =
e2t − 2t− 1

2t2

(d) g(t) =
e2t(ty − 1) + 2et − t− 1

t2

(e) (3/8)
(

e2t(4t2 − 4t + 2)− 2
t3

)

3. (a) g(t) =
2

2− t

(b) g(t) =
4− 3t

2(1− t)(2− t)

(c) g(t) =
4

(2− t)2
(d) g(t) =

( λ

λ + t

)
, t < λ .

5. (a) k(τ) =
1

2iτ
(e2iτ − 1)

(b) k(τ) =
e2iτ (2iτ − 1) + 1

−2τ2

(c) k(τ) =
e2iτ − 2iτ − 1

−2τ2

(d) k(τ) =
e2iτ (iτ − 1) + 2eiτ − iτ − 1

−τ2

(e) k(τ) = (3/8)
(

e2iτ (−4τ2 − 4iτ + 2
−iτ3

)

7. (a) g(−t) =
1− e−t

t

(b) etg(t) =
e2t − et

t

(c) g(et) =
e3t − 1

3t

(d) ebg(at) =
eb(eat − 1)

at

9. (a) g(t) = et2+t

(b)
(
g(t)

)2
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(c)
(
g(t)

)n

(d)
(
g(t/n)

)n

(e) et2/2
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Chapter 11

Markov Chains

11.1 Introduction

1. w(1) = (.5, .25, .25)

w(2) = (.4375, .1875, .375)

w(3) = (.40625, .203125, .390625)

3. Pn = P for all n.

5. 1

7. (a) Pn = P

(b) Pn =
{

P, if n is odd,
I, if n is even.

9. p2 + q2, q2,

( 0 1
0 p q
1 q p

)
11. .375

19. (a) 5/6.

(b) The ‘transition matrix’ is

P =
( H T

H 5/6 1/6
T 1/2 1/2

)
.

(c) 9/10.
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(d) No. If it were a Markov chain, then the answer to (c) would be the same
as the answer to (a).

11.2 Absorbing Markov Chains

1. a = 0 or b = 0

3. Examples 11.10 and 11.11

5. The transition matrix in canonical form is

P =



GG, Gg GG, gg Gg, Gg Gg, gg GG, GG gg, gg

GG, Gg 1/2 0 1/4 0 1/4 0
GG, gg 0 0 1 0 0 0
Gg,Gg 1/4 1/8 1/4 1/4 1/16 1/16
Gg, gg 0 0 1/4 1/2 0 1/4
GG, GG 0 0 0 0 1 0
gg, gg 0 0 0 0 0 1

.

Thus

Q =



GG, Gg GG, gg Gg, Gg Gg, gg

GG, Gg 1/2 0 1/4 0
GG, gg 0 0 1 0
Gg, Gg 1/4 1/8 1/4 1/4
Gg, gg 0 0 1/4 1/2
.

,

and

N = (I −Q)−1 =


GG, Gg GG, gg Gg, Gg Gg, gg

GG, Gg 8/3 1/6 4/3 2/3
GG, gg 4/3 4/3 8/3 4/3
Gg, Gg 4/3 1/3 8/3 4/3
Gg, gg 2/3 1/6 4/3 8/3

.

From this we obtain

t = Nc =


GG, Gg 29/6
GG, gg 20/3
Gg,Gg 17/3
Gg, gg 29/6

,
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and

B = NR =


GG, GG gg, gg

GG, Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4

.

7. N =

 2.5 3 1.5
2 4 2

1.5 3 2.5



Nc =

 7
8
7



B =

 5/8 3/8
1/2 1/2
3/8 5/8


9. 2.08

13. Using timid play, Smith’s fortune is a Markov chain with transition matrix

P =



1 2 3 4 5 6 7 0 8
1 0 .4 0 0 0 0 0 .6 0
2 .6 0 .4 0 0 0 0 0 0
3 0 .6 0 .4 0 0 0 0 0
4 0 0 .6 0 .4 0 0 0 0
5 0 0 0 .6 0 .4 0 0 0
6 0 0 0 0 .6 0 .4 0 0
7 0 0 0 0 0 .6 0 0 .4
0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 1


.

For this matrix we have

B =



0 8
1 .98 .02
2 .95 .05
3 .9 .1
4 .84 .16
5 .73 .27
6 .58 .42
7 .35 .65


.
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For bold strategy, Smith’s fortune is governed instead by the transition
matrix

P =



3 4 6 0 8
3 0 0 .4 .6 0
4 0 0 0 .6 .4
6 0 .6 0 0 .4
0 0 0 0 1 0
8 0 0 0 0 1

,

with

B =


0 8

3 .744 .256
4 .6 .4
6 .36 .64

.

From this we see that the bold strategy gives him a probability .256 of
getting out of jail while the timid strategy gives him a smaller probability
.1. Be bold!

15. (a)

P =



3 4 5 1 2
3 0 2/3 0 1/3 0
4 1/3 0 2/3 0 0
5 0 2/3 0 0 1/3
1 0 0 0 1 0
2 0 0 0 0 1

.

(b)

N =


3 4 5

3 5/3 2 4/3
4 1 3 2
5 2/3 2 7/3

,

t =

3 5
4 6
5 5

,

B =


1 2

3 5/9 4/9
4 1/3 2/3
5 2/9 7/9

.

(c) Thus when the score is deuce (state 4), the expected number of points to
be played is 6, and the probability that B wins (ends in state 2) is 2/3.
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17. For the color-blindness example, we have

B =


G, GG g, gg

g,GG 2/3 1/3
G, Gg 2/3 1/3
g,Gg 1/3 2/3
G, gg 1/3 2/3

,

and for Example 9 of Section 11.1, we have

B =


GG, GG gg, gg

GG, Gg 3/4 1/4
GG, gg 1/2 1/2
Gg,Gg 1/2 1/2
Gg, gg 1/4 3/4

.

In each case the probability of ending up in a state with all G’s is propor-
tional to the number of G’s in the starting state. The transition matrix
for Example 9 is

P =



GG, GG GG,Gg GG, gg Gg,Gg Gg, gg gg, gg

GG, GG 1 0 0 0 0 0
GG, Gg 1/4 1/2 0 1/4 0 0
GG, gg 0 0 0 1 0 0
Gg,Gg 1/16 1/4 1/8 1/4 1/4 1/16
Gg, gg 0 0 0 1/4 1/2 1/4
gg, gg 0 0 0 0 0 1

.

Imagine a game in which your fortune is the number of G’s in the state that
you are in. This is a fair game. For example, when you are in state Gg,gg
your fortune is 1. On the next step it becomes 2 with probability 1/4,
1 with probability 1/2, and 0 with probability 1/4. Thus, your expected
fortune after the next step is equal to 1, which is equal to your current
fortune. You can check that the same is true no matter what state you are
in. Thus if you start in state Gg,gg, your expected final fortune will be 1.
But this means that your final fortune must also have expected value 1.
Since your final fortune is either 4 if you end in GG, GG or 0 if you end
in gg, gg, we see that the probability of your ending in GG, GG must be
1/4.

19. (a)

P =


1 2 0 3

1 0 2/3 1/3 0
2 2/3 0 0 1/3
0 0 0 1 0
3 0 0 0 1

.



64 CHAPTER 11. MARKOV CHAINS

(b)

N =
( 1 2

1 9/5 6/5
2 6/5 9/5

)
,

B =
( 0 3

1 3/5 2/5
2 2/5 3/5

)
,

t =
(

1 3
2 3

)
.

(c) The game will last on the average 3 moves.

(d) If Mary deals, the probability that John wins the game is 3/5.

21. The problem should assume that a fraction

qi = 1−
∑

j

qij > 0

of the pollution goes into the atmosphere and escapes.

(a) We note that u gives the amount of pollution in each city from today’s
emission, uQ the amount that comes from yesterday’s emission, uQ2 from
two days ago, etc. Thus

wn = u + uQ + · · ·uQn−1 .

(b) Form a Markov chain with Q-matrix Q and with one absorbing state to
which the process moves with probability qi when in state i. Then

I + Q + Q2 + · · ·+ Qn−1 → N ,

so
w(n) → w = uN .

(c) If we are given w as a goal, then we can achieve this by solving w = Nu
for u, obtaining

u = w(I−Q) .

27. Use the solution to Exercise 24 with w = f.

29. For the chain with pattern HTH we have already verified that the con-
jecture is correct starting in HT. Assume that we start in H. Then the
first player will win 8 with probability 1/4, so his expected winning is 2.
Thus E(T |H) = 10−2 = 8, which is correct according to the results given
in the solution to Exercise 28. The conjecture can be verified similarly
for the chain HHH by comparing the results given by the conjecture with
those given by the solution to Exercise 28.
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31. You can easily check that the proportion of G’s in the state provides a
harmonic function. Then by Exercise 27 the proportion at the starting
state is equal to the expected value of the proportion in the final aborbing
state. But the proportion of 1s in the absorbing state GG, GG is 1. In the
other absorbing state gg, gg it is 0. Thus the expected final proportion is
just the probability of ending up in state GG, GG. Therefore, the proba-
bility of ending up in GG, GG is the proportion of G genes in the starting
state.(See Exercise 17.)

33. In each case Exercise 27 shows that

f(i) = biNf(N) + (1− biN )f(0) .

Thus

biN =
f(i)− f(0)
f(N)− f(0)

.

Substituting the values of f in the two cases gives the desired results.

11.3 Ergodic Markov Chains

1. (a), (f)

3. (a) a = 0 or b = 0

(b) a = b = 1

(c) (0 < a < 1 and 0 < b < 1) or (a = 1 and 0 < b < 1) or (0 < a < 1 and
b = 1).

5. (a) (2/3, 1/3)

(b) (1/2, 1/2)

(c) (2/7, 3/7, 2/7)

7. The fixed vector is (1, 0) and the entries of this vector are not strictly
positive, as required for the fixed vector of an ergodic chain.

9. Let

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,
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with column sums equal to 1. Then

(1/3, 1/3, 1/3)P = (1/3
3∑

j=1

pj1, 1/3
3∑

j=1

pj2, 1/3
3∑

j=1

pj3)

= (1/3, 1/3, 1/3) .

The same argument shows that if P is an n × n transition matrix with
columns that add to 1 then

w = (1/n, · · · , 1/n)

is a fixed probability vector. For an ergodic chain this means the the
average number of times in each state is 1/n.

11. In Example 11.11 of Section 11.1, the state (GG, GG) is absorbing, and
the same reasoning as in the immediately preceding answer applies to show
that this chain is not ergodic.

13. The fixed vector is w = (a/(b + a), b/(b + a)). Thus in the long run
a proportion b/(b + a) of the people will be told that the President will
run. The fact that this is independent of the starting state means it
is independent of the decision that the President actually makes. (See
Exercise 2 of Section 11.1)

15. It is clearly possible to go between any two states, so the chain is ergodic.
From 0 it is possible to go to states 0, 2, and 4 only in an even number of
steps, so the chain is not regular. For the general Erhrenfest Urn model
the fixed vector must statisfy the following equations:

1
n

w1 = w0 ,

wj+1
j + 1

n
+ wj−1

n− j + 1
n

= wj , if 0 < j < n,

1
n

wn−1 = wn .

It is easy to check that the binomial coefficients satisfy these conditions.

17. Consider the Markov chain whose state is the value of Sn mod(7), that
is, the remainder when Sn is divided by 7. Then the transition matrix for
this chain is
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P =



0 1 2 3 4 5 6
0 0 1/6 1/6 1/6 1/6 1/6 1/6
1 1/6 0 1/6 1/6 1/6 1/6 1/6
2 1/6 1/6 0 1/6 1/6 1/6 1/6
3 1/6 1/6 1/6 0 1/6 1/6 1/6
4 1/6 1/6 1/6 1/6 0 1/6 1/6
5 1/6 1/6 1/6 1/6 1/6 0 1/6
6 1/6 1/6 1/6 1/6 1/6 1/6 0


.

Since the column sums of this matrix are 1, the fixed vector is

w = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7) .

19.

(a) For the general chain it is possible to go from any state i to any other state
j in r2 − 2r + 2 steps. We show how this can be done starting in state 1.
To return to 1, circle (1, 2, .., r − 1, 1) r − 2 times (r2 − 3r + 2 steps) and
(1, ..., r, 1) once (r steps). For k = 1, ..., r − 1 to reach state k + 1, circle
(1, 2, . . . , r, 1) r−k times (r2−rk steps) then (1, 2, . . . , r−1, 1) k−2 times
(rk − 2r− k + 2 steps) and then move to k + 1 in k steps.You have taken
r2 − 2r + 2 steps in all. The argument is the same for any other starting
state with everything translated the appropriate amount.

(b)

P =

 0 ∗ 0
∗ 0 ∗
∗ 0 0

 , P2 =

 ∗ 0 ∗
∗ ∗ 0
0 ∗ 0

 , P3 =

 ∗ ∗ 0
∗ ∗ ∗
∗ 0 ∗

 ,

P4 =

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ 0

 , P5 =

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 .

25. To each Markov chain we can associate a directed graph, whose vertices are
the states i of the chain, and whose edges are determined by the transition
matrix: the graph has an edge from i to j if and only if pij > 0. Then
to say that P is ergodic means that from any state i you can find a path
following the arrows until you reach any state j. If you cut out all the
loops in this path you will then have a path that never interesects itself,
but still leads from i to j. This path will have at most r − 1 edges, since
each edge leads to a different state and none leads to i. Following this
path requires at most r − 1 steps.

27. If P is ergodic it is possible to go between any two states. The same will
be true for the chain with transition matrix 1

2 (I+P). But for this chain it
is possible to remain in any state; therefore, by Exercise 26, this chain is
regular.
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29.

(b) Since P has rational transition probabilities, when you solve for the fixed
vector you will get a vector a with rational components. We can multiply
through by a sufficiently large integer to obtain a fixed vector u with
integer components such that each component of u is an integer multiple
of the corresponding component of a. Let a(n) be the vector resulting
from the nth iteration. Let b(n) = a(n)P. Then a(n+1) is obtained by
adding chips to b(n+1). We want to prove that a(n+1) ≥ a(n). This is
true for n = 0 by construction. Assume that it is true for n. Then
multiplying the inequality by P gives that b(n+1) ≥ b(n). Consider the
component a

(n+1)
j . This is obtained by adding chips to b

(n+1)
j until we

get a multiple of aj . Since b
(n)
j ≤ b

(n+1)
j , any multiple of aj that could be

obtained in this manner to define a
(n+1)
j could also have been obtained to

define a
(n)
j by adding more chips if necessary. Since we take the smallest

possible multiple aj , we must have a
(n)
j ≤ an+1

j . Thus the results after
each iteration are monotone increasing. On the other hand, they are
always less than or equal to u. Since there are only a finite number of
integers between components of a and u, the iteration will have to stop
after a finite number of steps.

31. If the maximum of a set of numbers is an average of other elements of the
set, then each of the elements with positive weight in this average must
also be maximum. By assumption, P x = x. This implies Pnx = x for
all n. Assume that xi = M , where M is the maximum value for the xk’s,
and let j be any other state. Then there is an n such that pn

ij > 0. The
ith row of the equation Pnx = x presents xi as an average of values of xk

with positive weight,one of which is xj . Thus xj = M , and x is constant.

11.4 Fundamental Limit Theorem for Regular
Chains

1.
(

1/3
1/3

)
3. For regular chains, only the constant vectors are fixed column vectors.
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11.5 Mean First Passage Time for Ergodic Chains

1.

Z =
(

11/9 −2/9
−1/9 10/9

)
.

and

M =
(

0 2
4 0

)
.

3. 2

5. The fixed vector is w = (1/6,1/6,1/6,1/6,1/6,1/6), so the mean recurrence
time is 6 for each state.

7. (a) 

1 2 3 4 5 6
1 0 0 1 0 0 0
2 0 0 1 0 0 0
3 1/4 1/4 0 1/4 1/4 0
4 0 0 1/2 0 0 1/2
5 0 0 1/2 0 0 1/2
6 0 0 0 1/2 1/2 0


(b) The rat alternates between the sets {1, 2, 4, 5} and {3, 6}.

(c) w = (1/12, 1/12, 4/12, 2/12, 2/12, 2/12).

(d) m1,5 = 7

9. (a) if n is odd, P is regular. If n is even, P

is ergodic but not regular.

(b) w = (1/n, · · · , 1/n).

(c) From the program Ergodic we obtain

M =



0 1 2 3 4
0 0 4 6 6 4
1 4 0 4 6 6
2 6 4 0 4 6
3 6 6 4 0 4
4 4 6 6 4 0

.

This is consistent with the conjecture that mij = d(n − d), where d is the
clockwise distance from i to j.
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11. Yes, the reverse transition matrix is the same matrix.

13. Assume that w is a fixed vector for P . Then

∑
i

wip
∗
ij =

∑
i

wiwjpji

wi
=
∑

i

wjpji = wj ,

so w is a fixed vector for P *. Thus if w* is the unique fixed vector for P *
we must have w = w*.

15. If pij = pji then P has column sums 1. We have seen (Exercise 9 of
Section 11.3) that in this case the fixed vector is a constant vector. Thus
for any two states si and sj , wi = wj and pij = pji. Thus wipij = wjpji,
and the chain is reversible.

17. We know that wZ = w. We also know that mki = (zii − zki)/wi and
wi = 1/ri. Putting these in the relation

m̄i =
∑

k

wkmki + wiri ,

we see that

m̄i =
∑

k

wk
zii − zki

wi
+ 1

=
zii

wi

∑
k

wk −
1
wi

∑
k

wkzki + 1

=
zii

wi
− 1 + 1 =

zii

wi
.

19. Recall that
mij =

∑
j

zjj − zij

wj
.

Multiplying through by wj summing on j and, using the fact that Z has
row sums 1, we obtain

mij =
∑

j

zjj −
∑

j

zij =
∑

j

zjj − 1 = K,

which is independent of i.

21. The transition matrix is

P =


GO A B C

GO 1/6 1/3 1/3 1/6
A 1/6 1/6 1/3 1/3
B 1/3 1/6 1/6 1/3
C 1/3 1/3 1/6 1/6

.
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Since the column sums are 1, the fixed vector is

w = (1/4, 1/4, 1/4, 1/4) .

From this we see that wf = 0. From the result of Exercise 20 we see that
your expected winning starting in GO is the first component of the vector
Zf where

f =


15
−30
−5
20

 .

Using the program ergodic we find that the long run expected winning
starting in GO is 10.4.

23. Assume that the chain is started in state si. Let X
(n)
j equal 1 if the chain

is in state si on the nth step and 0 otherwise. Then

S
(n)
j = X

(0)
j + X

(1)
j + X

(2)
j + . . . X

(n)
j

and
E(X(n)

j ) = Pn
ij .

Thus

E(S(n)
j ) =

n∑
h=0

p
(h)
ij .

If now follows from Exercise 16 that

lim
n→∞

E(S(n)
j )

n
= wj .
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Chapter 12

Random Walks

12.1 Random Walks in Euclidean Space

1. Let pn = probability that the gambler is ruined at play n. Then

pn = 0, if n is even,
p1 = q,
pn = p(p1pn−2 + p3pn−4 + · · ·+ pn−2p1), if n > 1 is odd.

Thus

h(z) = qz + pz
(
h(x)

)2

,

so

h(z) =
1−

√
1− 4pqz2

2pz
.

By Exercise 10 we have

h(1) =
{

q/p, if q ≤ p,
1, if q ≥ p,

h′(1) =
{

1/(q − p), if q > p,
∞, if q = p.

This says that when q > p, the gambler must be ruined, and the expected
number of plays before ruin is 1/(q − p). When p > q, the gambler has a
probability q/p of being ruined. When p = q, the gambler must be ruined
eventually, but the expected number of plays until ruin is not finite.

3. (a) From the hint:

hk(z) = h
U 1

(z) · · ·h
U k

(z) =
(
h(z)

)k

.

73
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(b)

hk(1) =
(
h(1)

)k

=
{

(q/p)k if q ≤ p,
1 if q ≥ p.

h′(1) =
{

k/(q − p) if q > p,
∞ if q = p.

Thus the gambler must be ruined if q ≥ p. The expected number of plays
in this case is k/(q − p) if q > p and ∞ if q = p. When q < p he is ruined
with probability (q/p)k.


