Mathematics 1550H - Probability I: Introduction to Probability Trent University, Summer 2020 (S62)

Solutions to Assignment \#4

(Un)expected Values?
Due on Friday, 17 July.
Consider the probability density function $f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}}$.

1. Verify that $f(x)$ is a valid probability density function. [4]

Solution. First, since $1+x^{2} \geq 1>0$ for all x and $\frac{1}{\pi}>0, f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}}>0$ for all x.

Second, since rational functions like $f(x)$ are continuous everywhere they are defined, and $f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}}$ is defined everywhere (because $1+x^{2} \geq 1>0$ for all x, the denominator is never 0), $f(x)$ is continuous and thus integrable for all x.

Third, we check that $\int_{-\infty}^{\infty} f(x) d x=1$. For once, we will do the improper integral carefully. Look up the antiderivative if you don't already know it. If you took MATH 1005 H you are likely not to have seen the inverse to $\tan (x)$, namely $\arctan (x)$, which is the antiderivative of $\frac{1}{1+x^{2}}$.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1+x^{2}} d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x \\
& =\frac{1}{\pi} \int_{-\infty}^{0} \frac{1}{1+x^{2}} d x+\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{1+x^{2}} d x \\
& =\lim _{a \rightarrow \infty} \frac{1}{\pi} \int_{a}^{0} \frac{1}{1+x^{2}} d x+\lim _{b \rightarrow \infty} \frac{1}{\pi} \int_{0}^{b} \frac{1}{1+x^{2}} d x \\
& =\left.\frac{1}{\pi} \lim _{a \rightarrow \infty} \arctan (x)\right|_{a} ^{0}+\left.\frac{1}{\pi} \lim _{b \rightarrow \infty} \arctan (x)\right|_{0} ^{b} \\
& =\frac{1}{\pi} \lim _{a \rightarrow \infty}(\arctan (0)-\arctan (a))+\frac{1}{\pi} \lim _{b \rightarrow \infty}(\arctan (b)-\arctan (0)) \\
& =\frac{1}{\pi}\left(0-\left(-\frac{\pi}{2}\right)\right)+\frac{1}{\pi}\left(\frac{\pi}{2}-0\right)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Since it satisfies all three conditions necessary to be a valid probability density, $f(x)=$ $\frac{1}{\pi} \cdot \frac{1}{1+x^{2}}$ is one.
2. Suppose the continuous random variable X has $f(x)$ as its density function. Show that $E(X)$ is undefined. [2]

Solution. We try to compute the expected value of X and see what happens. Once again, we'll do the improper integral fairly carefully.

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} \frac{1}{\pi} \cdot \frac{x}{1+x^{2}} d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{1+x^{2}} d x \\
& =\frac{1}{\pi} \int_{-\infty}^{0} \frac{x}{1+x^{2}} d x+\frac{1}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} d x \\
& =\lim _{a \rightarrow-\infty} \frac{1}{\pi} \int_{a}^{0} \frac{x}{1+x^{2}} d x+\lim _{b \rightarrow \infty} \frac{1}{\pi} \int_{0}^{b} \frac{x}{1+x^{2}} d x
\end{aligned}
$$

$$
\text { Substitute } u=1+x^{2} \text {, so } d u=2 x d x \text { and } x d x=\frac{1}{2} d u, \quad x \quad a \quad 0 \quad b
$$

$$
\text { and change the limits of integration as we go along: } \quad \begin{array}{llll}
u & 1+a^{2} & 1 & 1+b^{2}
\end{array}
$$

$$
\begin{aligned}
& =\lim _{a \rightarrow-\infty} \frac{1}{\pi} \int_{1+a^{2}}^{1} \frac{1}{u} \cdot \frac{1}{2} d u+\lim _{b \rightarrow \infty} \frac{1}{\pi} \int_{1}^{1+b^{2}} \frac{1}{u} \cdot \frac{1}{2} d u \\
& =\left.\frac{1}{2 \pi} \lim _{a \rightarrow-\infty} \ln (u)\right|_{1+a^{2}} ^{1}+\left.\frac{1}{2 \pi} \lim _{b \rightarrow \infty} \ln (u)\right|_{1} ^{1+b^{2}} \\
& =\frac{1}{2 \pi} \lim _{a \rightarrow-\infty}\left(\ln (1)-\ln \left(1+a^{2}\right)\right)+\frac{1}{2 \pi} \lim _{b \rightarrow \infty}\left(\ln \left(1+b^{2}\right)-\ln (1)\right) \\
& =-\frac{1}{2 \pi} \lim _{a \rightarrow-\infty} \ln \left(1+a^{2}\right)+\frac{1}{2 \pi} \lim _{b \rightarrow \infty} \ln \left(1+b^{2}\right)
\end{aligned}
$$

At this point, things break down: as $1+x^{2} \rightarrow \infty$, and hence $\ln \left(1+x^{2}\right) \rightarrow \infty$, as $x \rightarrow \pm \infty$, neither limit needed to compute the improper integral equals a real number. Since both need to equal a real number in order for the improper integral we started with to be defined, it follows that $E(X)$ is undefined.
3. Find an example of a probability density function $g(x)$ such that if a continuous random variable X has $g(x)$ as its density function, then $E(X)$ is defined but $V(X)$ is not. [4]
Solution. We take a little hint from the end of the lecture Example: A pretty easy continuous density function or two:

Since $E(X)$ seems to be defined for this family of densities when $n \geq 3$ and $V(X)$ is only defined when $n \geq 4$, lets try the case $n=3$, so we'll let $g(x)=\left\{\begin{array}{cc}2 x^{-3} & x \geq 1 \\ 0 & x<0\end{array}\right.$. We do need to check that this is indeed a valid density:

First, since $0 \geq 0$ and $2 x^{-3}>0$ when $x \geq 1$, it follows that $g(x) \geq 0$ for all x.
Second, since $g(x)$ is defined and continuous everywhere except at $x=1$, where it has a jump discontinuity, $g(x)$ is integrable everywhere.

Third,

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(x) d x & =\int_{-\infty}^{1} 0 d x+\int_{1}^{\infty} 2 x^{-3} d x=0+\lim _{a \rightarrow \infty} \int_{1}^{a} 2 x^{-3} d x \\
& =\left.\lim _{a \rightarrow \infty} 2 \cdot \frac{x^{-3+1}}{-3+1}\right|_{1} ^{a}=\left.\lim _{a \rightarrow \infty} 2 \cdot \frac{x^{-2}}{-2}\right|_{1} ^{a}=\lim _{a \rightarrow \infty}-\left.x^{-2}\right|_{1} ^{a} \\
& =\lim _{a \rightarrow \infty}\left(\left(-a^{-2}\right)-\left(-1^{-2}\right)\right)=\lim _{a \rightarrow \infty}\left(-\frac{1}{a^{2}}+1\right)=-0+1=1
\end{aligned}
$$

since $\frac{1}{a^{2}} \rightarrow 0$ as $a \rightarrow \infty$.
Since it satisfies all the necessary conditions, $g(x)$ is a valid density function.
Next, let us compute $E(X)$ for a random variable X having $g(x)$ as its density:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x g(x) d x=\int_{-\infty}^{1} x \cdot 0 d x+\int_{1}^{\infty} x \cdot 2 x^{-3} d x=0+\lim _{a \rightarrow \infty} \int_{1}^{a} 2 x^{-2} d x \\
& =\left.\lim _{a \rightarrow \infty} 2 \cdot \frac{x^{-2+1}}{-2+1}\right|_{1} ^{a}=\left.\lim _{a \rightarrow \infty} 2 \cdot \frac{x^{-1}}{-1}\right|_{1} ^{a}=\lim _{a \rightarrow \infty}-\left.2 x^{-1}\right|_{1} ^{a}=\left.\lim _{a \rightarrow \infty} \frac{-2}{x}\right|_{1} ^{a} \\
& =\lim _{a \rightarrow \infty}\left(\frac{-2}{a}-\frac{-2}{1}\right)=\lim _{a \rightarrow \infty}\left(\frac{-2}{a}+2\right)=-0+2=2
\end{aligned}
$$

Since we got a real number out of this computation, $E(X)$ is defined.
Finally, let us try to compute $V(X)=E\left(X^{2}\right)-[E(X)]^{2}$. We have $E(X)=2$ from the above, so it remains to compute $E\left(X^{2}\right)$.

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} g(x) d x=\int_{-\infty}^{1} x^{2} \cdot 0 d x+\int_{1}^{\infty} x^{2} \cdot 2 x^{-3} d x=0+\lim _{a \rightarrow \infty} \int_{1}^{a} 2 x^{-1} d x \\
& =\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{2}{x} d x=\left.\lim _{a \rightarrow \infty} 2 \ln (x)\right|_{1} ^{a}=\lim _{a \rightarrow \infty}(2 \ln (a)-2 \ln (1))=\lim _{a \rightarrow \infty}(2 \ln (a)-2 \cdot 0) \\
& =\lim _{a \rightarrow \infty} 2 \ln (a)=\infty
\end{aligned}
$$

since $\ln (a) \rightarrow \infty$ as $a \rightarrow \infty$. Since we did not get a real number out of the improper integral, $E\left(X^{2}\right)$, and consequently also $V(X)$, is undefined.

