Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2020 (S62)

 Solutions to Quiz \#6

 Solutions to Quiz \#6
 Tuesday, 28 July

We roll a fair standard die 100 times, each roll being independent of all the others. For $1 \leq i \leq 100$, let the random variable X_{i} give the number on the face that comes up on the i th die roll. Let $X=\sum_{n=1}^{100} X_{i}=X_{1}+X_{2}+\cdots+X_{100}$ be the total sum of all the die rolls.

1. Compute the expected value $E\left(X_{i}\right)$ and variance $V\left(X_{i}\right)$ of X_{i}. [1]

Solution. Each of the six numbers on the faces of the die has equal probability of $\frac{1}{6}$ of coming up. By definition,

$$
E\left(X_{i}\right)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=\frac{21}{6}=\frac{7}{2}=3.5
$$

and

$$
E\left(X_{i}^{2}\right)=1^{2} \cdot \frac{1}{6}+2^{2} \cdot \frac{1}{6}+3^{2} \cdot \frac{1}{6}+4^{2} \cdot \frac{1}{6}+5^{2} \cdot \frac{1}{6}+6^{2} \cdot \frac{1}{6}=\frac{91}{6} \approx 15.1667
$$

so

$$
V\left(X_{i}\right)=E\left(X_{i}^{2}\right)-\left[E\left(X_{i}\right)\right]^{2}=\frac{91}{6}-\left[\frac{7}{2}\right]^{2}=\frac{91}{6}-\frac{49}{4}=\frac{182-147}{12}=\frac{35}{12} \approx 2.9167
$$

2. Compute the expected value $E(X)$ and variance $V(X)$ of X. [1]

Solution. Since $X=X_{1}+X_{2}+\cdots+X_{100}$, we have

$$
E(X)=E\left(X_{1}+X_{2}+\cdots+X_{100}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{100}\right)=100 \cdot 3.5=350
$$

and, since we also have that the X_{i} are all independent,

$$
\begin{aligned}
V(X) & =V\left(X_{1}+X_{2}+\cdots+X_{100}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)+\cdots+V\left(X_{100}\right) \\
& =100 \cdot \frac{35}{12}=\frac{875}{3} \approx 291.6667 \quad \square
\end{aligned}
$$

3. Approximate $P(400 \leq X \leq 500)$ using the standard normal distribution. [3]

Solution. The standard deviation of X is $\sigma_{X}=\sqrt{V(X)}=\sqrt{\frac{875}{3}} \approx 17.0783$. We compute the " Z-score" of X, i.e. we let $Z=\frac{X-E(X)}{\sigma_{X}} \approx \frac{X-350}{17.0783}$. Then the Central Limit Theorem suggests that Z has something close to a standard normal distribution, so

$$
\begin{aligned}
P(400 \leq X \leq 500) & \approx P\left(\frac{400-350}{17.0783} \leq \frac{X-350}{17.0783} \leq \frac{500-350}{17.0783}\right) \approx P(2.93 \leq Z \leq 8.78) \\
& \approx P(Z \leq 8.78)-P(Z<2.93)=1-0.9983=0.0017
\end{aligned}
$$

Note that 8.78 is off the charts on the cumulative standard normal table, so $P(Z \leq 8.78)$ is close enough to 1 to make no significant difference here, and that according to the table, $P(Z<2.93) \approx 0.9983$.

