Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2020 (S62)

Solutions to Quiz \#5
Tuesday, 21 July
The continuous random variable X has the following probability density function:

$$
f(x)=\frac{1}{2} e^{-|x-1|}
$$

1. Verify that $f(x)$ is a valid probability density function. [2]

Solution. We need to check the three conditions for being a probability density function.
First, $f(x)=\frac{1}{2} e^{-|x-1|} \geq 0$ for all x because $e^{c}>0$ for every real number c.
Second, since $f(x)$ is a composition of the functions $g(x)=-|x-1|$ and $h(y)=\frac{1}{2} e^{y}$, which are both defined and continuous for all x and y, respectively, $f(x)=h(g(x))=$ $\frac{1}{2} e^{-|x-1|}$ is also defined and continuous, and hence integrable, for all x.

Third, we check that $\int_{-\infty}^{\infty} f(x) d x=1$:

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{\infty} \frac{1}{2} e^{-|x-1|} d x=\int_{-\infty}^{1} \frac{1}{2} e^{-(1-x)} d x+\int_{1}^{\infty} \frac{1}{2} e^{-(x-1)} d x \\
& =\frac{1}{2} \int_{-\infty}^{1} e^{x-1} d x+\frac{1}{2} \int_{1}^{\infty} e^{1-x} d x
\end{aligned}
$$

Substitute $u=x-1$ and $w=1-x$, so $d u=d x$ and $d w=(-1) d x$,
and $d x=(-1) d w$, and change limits: $\begin{array}{lll}x & -\infty & 1 \\ u & -\infty & 0\end{array} \& \begin{array}{ccc}x & 1 & \infty \\ w & 0 & -\infty\end{array}$
$=\frac{1}{2} \int_{-\infty}^{0} e^{u} d u+\frac{1}{2} \int_{0}^{-\infty} e^{w}(-1) d w=\left.\frac{1}{2} e^{u}\right|_{-\infty} ^{0}+\left.\frac{-1}{2} e^{w}\right|_{0} ^{-\infty}$

$$
=\frac{1}{2} e^{0}-\frac{1}{2} e^{-\infty}+\frac{-1}{2} e^{-\infty}-\frac{-1}{2} e^{0}=\frac{1}{2} \cdot 1-\frac{1}{2} \cdot 0-\frac{1}{2} \cdot 0+\frac{1}{2} \cdot 1=1
$$

Since $f(x)$ satisfies all three conditions, it is a valid probability density function.
2. Compute the expected value $E(X)$ of X. [1.5]

Solution. (Using calculus.) By definition,

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} x \cdot \frac{1}{2} e^{-|x-1|} d x=\int_{-\infty}^{1} \frac{1}{2} x e^{-(1-x)} d x+\int_{1}^{\infty} \frac{1}{2} x e^{-(x-1)} d x \\
& =\frac{1}{2} \int_{-\infty}^{1} x e^{x-1} d x+\frac{1}{2} \int_{1}^{\infty} x e^{1-x} d x
\end{aligned}
$$

As in the solution above to question 1 , substitute $u=x-1$ and $w=1-x$, so $d u=d x$ and $d w=(-1) d x$, and $d x=(-1) d w$, and change limits: $\begin{array}{lll}x & -\infty & 1 \\ u & -\infty & 0\end{array} \& \begin{array}{ccc}x & 1 & \infty \\ w & 0 & -\infty\end{array} \mathrm{We}$ then have $x=u+1$ and $x=1-w$ as well, so:

$$
\begin{aligned}
E(X) & =\frac{1}{2} \int_{-\infty}^{1} x e^{x-1} d x+\frac{1}{2} \int_{1}^{\infty} x e^{1-x} d x \\
& =\frac{1}{2} \int_{-\infty}^{0}(u+1) e^{u} d u+\frac{1}{2} \int_{0}^{-\infty}(1-w) e^{w}(-1) d w \\
& =\frac{1}{2} \int_{-\infty}^{0} u e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{u} d u+\frac{1}{2} \int_{-\infty}^{0}(1-w) e^{w} d w \\
& =\frac{1}{2} \int_{-\infty}^{0} u e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{w} d w-\frac{1}{2} \int_{-\infty}^{0} w e^{w} d w
\end{aligned}
$$

Since $\int_{-\infty}^{0} e^{u} d u=\int_{-\infty}^{0} e^{w} d w$ and $\int_{-\infty}^{0} u e^{u} d u=\int_{-\infty}^{0} w e^{w} d w$, it follows that:

$$
\begin{aligned}
E(X) & =\frac{1}{2} \int_{-\infty}^{0} u e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{w} d w-\frac{1}{2} \int_{-\infty}^{0} e^{w} d w \\
& =\int_{-\infty}^{0} e^{u} d u=\left.e^{u}\right|_{-\infty} ^{0}=e^{0}-e^{-\infty}=1-0=1
\end{aligned}
$$

Solution. (Without calculus.) Observe that for any real number a, we have

$$
f(1+a)=\frac{1}{2} e^{-||(1+a)-1||}=\frac{1}{2} e^{-|a|}=\frac{1}{2} e^{-|-a|}=\frac{1}{2} e^{-|(1-a)-1|}=f(1-a) .
$$

It follows that the graph of $f(x)$ is symmetric about the line $x=1$, and so, assuming that $E(X)$ is defined at all, we must have $E(X)=1$.
3. Compute the variance $V(X)$ and standard deviation σ_{X} of X. [1.5]

Solution. By definition, $V(X)=E\left(X^{2}\right)-[E(X)]^{2}$. We worked out $E(X)=1$ in solving question 2 above, so we still need to compute $E\left(X^{2}\right)$. By definition,

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{2} e^{-|x-1|} d x \\
& =\int_{-\infty}^{1} \frac{1}{2} x^{2} e^{-(1-x)} d x+\int_{1}^{\infty} \frac{1}{2} x^{2} e^{-(x-1)} d x \\
& =\frac{1}{2} \int_{-\infty}^{1} x^{2} e^{x-1} d x+\frac{1}{2} \int_{1}^{\infty} x^{2} e^{1-x} d x
\end{aligned}
$$

As in the solutions above to questions 1 and $\mathbf{2}$, substitute $u=x-1$ and $w=1-x$, so $d u=d x$ and $d w=(-1) d x$, and $d x=(-1) d w$, and change limits: $\begin{array}{lll}x & -\infty & 1 \\ u & -\infty & 0\end{array}$ \& $\begin{array}{ccc}x & 1 & \infty \\ w & 0 & -\infty\end{array}$ We then have $x=u+1$ and $x=1-w$ as well, so:

$$
\begin{aligned}
E\left(X^{2}\right)= & \frac{1}{2} \int_{-\infty}^{1} x^{2} e^{x-1} d x+\frac{1}{2} \int_{1}^{\infty} x^{2} e^{1-x} d x \\
= & \frac{1}{2} \int_{-\infty}^{0}(u+1)^{2} e^{u} d u+\frac{1}{2} \int_{0}^{-\infty}(1-w)^{2} e^{w}(-1) d w \\
= & \frac{1}{2} \int_{-\infty}^{0}\left(u^{2}+2 u+1\right) e^{u} d u+\frac{1}{2} \int_{-\infty}^{0}\left(1-2 w+w^{2}\right) e^{w} d w \\
= & \frac{1}{2} \int_{-\infty}^{0} u^{2} e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} 2 u e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{u} d u \\
& +\frac{1}{2} \int_{-\infty}^{0} e^{w} d w-\frac{1}{2} \int_{-\infty}^{0} 2 w e^{w} d w+\frac{1}{2} \int_{-\infty}^{0} w^{2} e^{w} d w
\end{aligned}
$$

Since we have that $\int_{-\infty}^{0} e^{u} d u=\int_{-\infty}^{0} e^{w} d w, \int_{-\infty}^{0} u e^{u} d u=\int_{-\infty}^{0} w e^{w} d w$, and also that $\int_{-\infty}^{0} u^{2} e^{u} d u=\int_{-\infty}^{0} w^{2} e^{w} d w$, we now have:

$$
\begin{aligned}
E\left(X^{2}\right)= & \frac{1}{2} \int_{-\infty}^{0} u^{2} e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} 2 u e^{u} d u+\frac{1}{2} \int_{-\infty}^{0} e^{u} d u \\
& +\frac{1}{2} \int_{-\infty}^{0} e^{w} d w-\frac{1}{2} \int_{-\infty}^{0} 2 w e^{w} d w+\frac{1}{2} \int_{-\infty}^{0} w^{2} e^{w} d w \\
= & \int_{-\infty}^{0} u^{2} e^{u} d u+\int_{-\infty}^{0} e^{u} d u
\end{aligned}
$$

We work out these integrals separately, the latter first:

$$
\int_{-\infty}^{0} e^{u} d u=\left.e^{u}\right|_{-\infty} ^{0}=e^{0}-e^{-\infty}=1-0=1
$$

Oh, wait! We could have skipped that because we already did it in solving question $\mathbf{2} \ldots$
To work out $\int_{-\infty}^{0} u^{2} e^{u} d u$ we resort to integration by parts, with $s=u^{2}$ and $t^{\prime}=e^{u}$, so $s^{\prime}=2 u$ and $t=e^{u}$. This gives:

$$
\begin{aligned}
\int_{-\infty}^{0} u^{2} e^{u} d u & =\left.u^{2} e^{u}\right|_{-\infty} ^{0}-\int_{-\infty}^{0} 2 u e^{u} d u=0^{2} e^{0}-(-\infty)^{2} e^{-\infty}-2 \int_{-\infty}^{0} u e^{u} d u \\
& =0-0-2 \int_{-\infty}^{0} u e^{u} d u=-2 \int_{-\infty}^{0} u e^{u} d u
\end{aligned}
$$

Technically, we should evaluate a limit to work out " $(-\infty)^{2} e^{-\infty}$ ", but knowing that exponential functions dominate polunomials tells us that the 0 that e^{u} tends to as $u \rightarrow-\infty$ wins over the ∞ that u^{2} tends to at the same time.

It remains to evaluate $\int_{-\infty}^{0} u e^{u} d u$. We use parts again, this time with $p=u$ and $q^{\prime}=e^{u}$, so $p^{\prime}=1$ and $q=e^{u}$. Then

$$
\int_{-\infty}^{0} u e^{u} d u=\left.u e^{u}\right|_{-\infty} ^{0}-\int_{-\infty}^{0} e^{u} d u=0 e^{0}-(-\infty) e^{\infty}-1=0-0-1
$$

where we once again exploit the fact that exponentials dominate polynomials to avoid computing a limit, as well as take advantage of having computed a certain integral once er, twice - before. Putting all these pieces together, we get that:

$$
E\left(X^{2}\right)=\int_{-\infty}^{0} u^{2} e^{u} d u+\int_{-\infty}^{0} e^{u} d u=-2 \int_{-\infty}^{0} u e^{u} d u+1=-2 \cdot(-1)+1=3
$$

Thus $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=3-1^{2}=2$ and $\sigma_{X}=\sqrt{V(X)}=\sqrt{2}$.

