Mathematics 1550H — Probability I: Introduction to Probability
TRENT UNIVERSITY, Summer 2020 (S62)

Solutions to Quiz #5
Tuesday, 21 July

The continuous random variable X has the following probability density function:
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1. Verify that f(x) is a valid probability density function. [2]

SOLUTION. We need to check the three conditions for being a probability density function.

First, f(z) = 2e~1#=11 > 0 for all z because e > 0 for every real number c.

Second, since f(z) is a composition of the functions g(z) = —|z — 1| and h(y) = 3e¥
which are both defined and continuous for all z and y, respectively, f(z) =
%e"m_” is also defined and continuous, and hence integrable, for all z.

Third, we check that [~ f(z)dz = 1:
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Substitute u = x — 1 and w = 1 — z, so du = dz and dw = (—1) dx,
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Since f(x) satisfies all three conditions, it is a valid probability density function. O

2. Compute the expected value E(X) of X. [1.5]

SOLUTION. (Using calculus.) By definition,
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As in the solution above to question 1, substitute u = x — 1 and w = 1 — z, so du = dx

and dw = (—1)dz, and dx = (—1) dw, and change limits: z —oo 1 r 1 o0 We
u —oo 0 w 0 —oo

then have x =u+ 1 and z = 1 — w as well, so:
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Since / e'du = / e dw and / ue" du = / we" dw, it follows that:
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SOLUTION. (Without calculus.) Observe that for any real number a, we have
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f(1+a) = 5e ||(1+)1||:§e||:§e| |:§e (==l = f(1—a).

It follows that the graph of f(x) is symmetric about the line x = 1, and so, assuming that
E(X) is defined at all, we must have E(X) =1.

3. Compute the variance V(X)) and standard deviation ox of X. [1.5]

SOLUTION. By definition, V(X) = E (X?) — [E(X)]?. We worked out E(X) = 1 in solving
question 2 above, so we still need to compute F (X 2). By definition,
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As in the solutions above to questions 1 and 2, substitute u = x — 1 and w = 1 — x,
so du = dx and dw = (—1)dz, and dr = (—1)dw, and change limits: z :z (1) &
r 1 oo

We then have x =u+1 and x =1 — w as well, so:
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Since we have that / e'du = / e dw, / ue' du = / we" dw, and also that
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We work out these integrals separately, the latter first:
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Oh, wait! We could have skipped that because we already did it in solving question 2 ...
0

To work out / u?e® du we resort to integration by parts, with s = u? and ¢ = e,
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so 8/ = 2u and t = e". This gives:
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Technically, we should evaluate a limit to work out “(—o00)2e=°°", but knowing that ex-
ponential functions dominate polunomials tells us that the 0 that e* tends to as u — —o0
wins over the oo that u? tendsoto at the same time.

It remains to evaluate / ue" du. We use parts again, this time with p = u and
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where we once again exploit the fact that exponentials dominate polynomials to avoid
computing a limit, as well as take advantage of having computed a certain integral once —
er, twice — before. Putting all these pieces together, we get that:
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Thus V(X) = E(X?) - [E(X)?=3-12=2and ox = /V(X)=v2. W



