Mathematics 1550H - Probability I: Introduction to Probability Trent University, Summer 2020 (S62)

Solutions to the even more corrected Quiz \#4
Tuesday, 14 July. Wednesday, 15 July
Suppose the continuous random variable X has the following probability density function:

$$
f(x)=\left\{\begin{array}{cl}
\frac{3}{4}\left(1-x^{2}\right) & -1<x<1 \\
0 & |x| \geq 1
\end{array}\right.
$$

1. Verify that $f(x)$ is a valid probability density function [2.5]

Solution. We need to check three conditions:
i. $f(x)$ is integrable because it is continuous: when $|x| \geq 1, f(x)$ is constant, hence continuous; when $-1<x<1, f(x)=\frac{3}{4}\left(1-x^{2}\right)$ is a polynomial, hence continuous; at $x= \pm 1, \frac{3}{4}\left(1-(\pm 1)^{2}\right)=\frac{3}{4}(1-1)=0$, so the two definitions are equal at the points the transition between them happens, so $f(x)$ is coninuous everywhere.
ii. $f(x)=0 \geq 0$ when $|x|>0$, and when $-1<x<1$ we have $x^{2}<1$ and $1-x^{2}>0$, making $f(x)=\frac{3}{4}\left(1-x^{2}\right) \geq 0$. Thus $f(x) \geq 0$ for all x.
iii. We need to check that $\int_{-\infty}^{\infty} f(x) d x=1$:

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{-1} 0 d x+\int_{-1}^{1} \frac{3}{4}\left(1-x^{2}\right) d x+\int_{1}^{\infty} 0 d x \\
& =0+\left.\frac{3}{4}\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{1}+0=\frac{3}{4}\left(1-\frac{1^{3}}{3}\right)-\frac{3}{4}\left((-1)-\frac{(-1)^{3}}{3}\right) \\
& =\frac{3}{4} \cdot \frac{2}{3}-\frac{3}{4}\left(-\frac{2}{3}\right)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Thus $f(x)$ is indeed a valid probability density function.
2. Compute the expected value $E(X)$ of X. [1]

Solution. We plug our density into the definition of expected value for continuous random variables and integrate away:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{-1} x \cdot 0 d x+\int_{-1}^{1} x \cdot \frac{3}{4}\left(1-x^{2}\right) d x+\int_{1}^{\infty} x \cdot 0 d x \\
& =\int_{-\infty}^{-1} 0 d x+\int_{-1}^{1} \frac{3}{4}\left(x-x^{3}\right) d x+\int_{1}^{\infty} 0 d x \\
& =0+\left.\frac{3}{4}\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{-1} ^{1}+0=\frac{3}{4}\left(\frac{1^{2}}{2}-\frac{1^{4}}{4}\right)-\frac{3}{4}\left(\frac{(-1)^{2}}{2}-\frac{(-1)^{4}}{4}\right) \\
& =\frac{3}{4} \cdot\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{3}{4} \cdot\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{3}{4} \cdot \frac{1}{4}-\frac{3}{4} \cdot \frac{1}{4}=0
\end{aligned}
$$

3. How could you have computed $E(X)$ without working out the relevant integral? [0.5]

Solution. Since $f(x)$ is an even function, i.e. $f(-x)=f(x)$ for all $x, x f(x)$ is an odd function, i.e. $(-x) f(-x)=-x f(x)$ for all x. The integral of any odd function over an interval symmetric about $x=0$ has to be 0 because any area below (respectively, above) the graph to the right of 0 is cancelled out by the symmetric area above (respectively, below) the graph to the left of 0 .

Alternatively, one could observe that the graph of $f(x)$ is symmetric about the line $x=0$ (which is what being even boils down to), so the "weighted by $f(x)$ average value of x " ought to be $x=0$.
4. Compute the variance $V(X)$ and standard deviation σ_{X} of X. [1]

Solution. By definition, $V(X)=E\left(X^{2}\right)-[E(X)]^{2}$. We computed $E(X)$ in 2, but we still need to work out $E\left(X^{2}\right)$.

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{-\infty}^{-1} x^{2} \cdot 0 d x+\int_{-1}^{1} x^{2} \cdot \frac{3}{4}\left(1-x^{2}\right) d x+\int_{1}^{\infty} x^{2} \cdot 0 d x \\
& =0+\int_{-1}^{1} \frac{3}{4}\left(x^{2}-x^{4}\right) d x+0=\left.\frac{3}{4}\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{-1} ^{1} \\
& =\frac{3}{4}\left(\frac{1^{3}}{3}-\frac{1^{5}}{5}\right)-\frac{3}{4}\left(\frac{(-1)^{3}}{3}-\frac{(-1)^{5}}{5}\right)=\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)-\frac{3}{4}\left(-\frac{1}{3}-\left(\frac{1}{5}\right)\right) \\
& =\frac{3}{4} \cdot \frac{2}{15}-\frac{3}{4}\left(-\frac{2}{15}\right)=\frac{6}{60}+\frac{6}{60}=\frac{12}{60}=\frac{1}{5}
\end{aligned}
$$

It follows that the variance of X is $V(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{1}{5}-0^{2}=\frac{1}{5}$ and its standard deviation is $\sigma_{X}=\sqrt{V(X)}=\sqrt{\frac{1}{5}}=\frac{1}{\sqrt{5}}$.

