Mathematics 1550H - Probability I: Introduction to Probability
 Trent University, Summer 2020 (S62)
 Solution to Quiz \#3

Recall that a standard 52 -card deck has four suits, \odot, \diamond, $\boldsymbol{\&}$, and $\boldsymbol{\uparrow}$, each of which has 13 cards, one each of the following kinds, $A, K, Q, J, 10,9,8,7,6,5,4,3$, and 2 . A hand of seven (7) cards is drawn at random from such a deck. (This means that you get the cards as a group, in no particular order, and with no possible way of getting the same card twice in the hand.) Find the probability that the hand ...

1. ... is a flush, i.e. all the cards in the hand are from the same suit. [1]

Solution. There are $\binom{52}{7}=\frac{52!}{7!(52-7)!}=\frac{52!}{7!45!}=133784560$ possible seven-card hands, any particular one of which is as likely as any other. There are $\binom{4}{1}=4$ ways to pick a suit and $\binom{13}{7}=1716$ ways to get a hand of seven cards from the chosen suit. It follows that there are $\binom{4}{1}\binom{13}{7}=4 \cdot 1716=6864$ hands which are flushes, and thus the probability of getting a flush is:

$$
P(\text { flush })=\frac{\text { \# flush hands }}{\# \text { possible hands }}=\frac{\binom{4}{1}\binom{13}{7}}{\binom{52}{7}}=\frac{6864}{133784560} \approx 0.00005
$$

Note: We'll be using the fact that there are $\binom{52}{7}=133784560$ possible seven-card hands without further comment in the remaining solutions.
2. ... has four cards of the same kind. [1]

Solution. There are $\binom{13}{1}=13$ ways to pick a kind and $\binom{4}{4}=1$ way to choose four cards of the chosen kind. Having done so, there are $\binom{52-4}{3}=\binom{48}{3}=17296$ ways to choose the remaining three cards in the hand from the remaining 48 cards in the deck. It follows that the number of hands with "four of a kind" is $\binom{13}{1}\binom{4}{1}\binom{48}{3}=13 \cdot 1 \cdot 17296=224848$, and thus theprobability of getting a hand with four of a kind is:

$$
\begin{aligned}
P(\text { four of a kind }) & =\frac{\# \text { hands with four of a kind }}{\# \text { possible hands }} \\
& =\frac{\binom{13}{1}\binom{4}{1}\binom{48}{3}}{\binom{52}{7}}=\frac{224848}{133784560} \approx 0.00168
\end{aligned}
$$

3. ... has exactly three cards of one kind, two cards of another kind, and two cards of yet another kind. [1]
Solution. There are $\binom{13}{1}=13$ ways to pick the kind from which three cards will be chosen, $\binom{4}{3}=4$ ways to choose the three cards from that kind, $\binom{12}{2}=66$ ways to pick the two kinds from which two cards each will be chosen, and $\binom{4}{2}=6$ ways to choose two cards of that kind for each of the selected kinds. (Note that three of a kind and two pairs gives us a seven-card hand, so there are no more cards to pick.) It follows that the number of
such hands is $\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{2}\binom{4}{2}=13 \cdot 4 \cdot 66 \cdot 6 \cdot 6=123552$, and thus the probability of getting a hand with exactly three cards of one kind, two cards of another kind, and two cards of yet another kind, is:

$$
\begin{aligned}
P(3 \text { of one kind, } 2 \text { each of two other kinds }) & =\frac{\# \text { such hands }}{\# \text { possible hands }} \\
& =\frac{\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{2}\binom{4}{2}}{\binom{52}{7}} \\
& =\frac{123552}{133784560} \approx 0.00092
\end{aligned}
$$

4. ... has cards of seven different kinds. [1]

Solution. This would be a hand in which each card is of a different kind. There are $\binom{13}{7}=1716$ ways to pick seven different kinds from thirteen different kinds. For each kind, there are $\binom{4}{1}=4$ ways to choose a single card of that kind. It follows that the number of such hands is $\binom{13}{7}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}=\binom{13}{7}\binom{4}{1}^{7}=1716 \cdot 4^{7}=28114944$, and thus the probability of getting a hand with cards of seven different kinds is:

$$
\begin{aligned}
P(7 \text { different kinds }) & =\frac{\# \text { such hands }}{\# \text { possible hands }}=\frac{\binom{13}{7}\binom{4}{1}^{7}}{\binom{52}{7}} \\
& =\frac{28114944}{133784560} \approx 0.21015
\end{aligned}
$$

5. ... is a straight, i.e. a set of cards that can be arranged to be consecutive with no gaps in the sequence $A K Q J 1098765432$, where we allow the sequence to wrap around the end. (So $32 A K Q J 10$ would count as a straight, for example.) [1]
Solution. A sequence of seven consecutive kinds is completely determined by the first card in the sequence. For example, if the first card in the sequence is 5 , the consecutive order given forces the corresponding sequence to be 5432 AK . Since there are only thirteen kinds, there are only $\binom{13}{1}=13$ possible consecutive sequences of seven kinds. However, there are $\binom{4}{1}=4$ possible choices of a card of each kind. It follows that the number of straights is $\binom{13}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}=\binom{13}{1}\binom{4}{1}^{7}=13 \cdot 4^{7}=212992$, and thus the probability of getting a straight is:

$$
P(\text { straight })=\frac{\# \text { straights }}{\# \text { possible hands }}=\frac{\binom{13}{1}\binom{4}{1}^{7}}{\binom{52}{7}}=\frac{212992}{133784560} \approx 0.00159
$$

