Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any two (2) of a-c. $[10=2 \times 5$ each]
a. Determine whether $f(x)=\left\{\begin{array}{cl}\frac{1}{2} e^{x} & x \leq 0 \\ \frac{1}{2} e^{-x} & x \geq 0\end{array}\right.$ is a valid probability density.
b. A hand of five cards is drawn randomly, one at a time (so order matters) and without replacement, from a standard 52 -card deck. What is the probability that the hand includes exactly three Vs_{s}, given that the first card drawn was a
c. A fair coin is tossed until it comes up heads for the second time. What is the probability that at least four tosses will be required?
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Suppose that A and B are events in some sample space, with $P(A)=P(B)=\frac{2}{3}$. What is the range of possible values of $P(A \mid B)$?
b. The continuous random variable X has the density function $g(x)=\left\{\begin{array}{cl}\frac{2}{9} x & 0 \leq x \leq 3 \\ 0 & \text { otherwise }\end{array}\right.$. Compute the probability that $1 \leq X$, given that $X \leq 2$.
c. A fair standard six-sided die is rolled once. If it comes up with an odd number, it is rolled just one more time; if it comes up with an even number, it is not rolled again. Compute the probability that the last roll made came up with 1 or 5 .
3. Do one (1) of \mathbf{a} or \mathbf{b}. [10]
a. The continuous random variable W has the density function $h(x)=\left\{\begin{array}{cc}x e^{-x} & x \geq 0 \\ 0 & x<0\end{array}\right.$. Compute $P(W \geq 1)$.
b. A fair coin is tossed until it comes up heads for the third time. Let the random variable Y count the total number of tosses that occur in this experiment. Find the probability funtion of Y and compute $P(Y \leq 5)$.
