Mathematics 1550H – Introduction to probability TRENT UNIVERSITY, Summer 2017

Solutions to Assignment #3 The Mathematical Inquisition Strikes Again!

In the Kafka-esque dystopian future in which mathematical scientists have taken over the world, you are condemned^{*} to working out the base 7 expansion of π by hand unless you can correctly answer the following question:

If you were to pick an answer to this question at random from among the choices below, what is the probability that it would be correct?

- (a) 0.2 (b) $1/\pi$
- (c) 1/5
- (d) 0.0
- (e) 4/10

1. Explain! *[5]*

SOLUTION. There is no probability that can be properly assigned here. Each of answers (a)–(e) has a $\frac{1}{5} = 0.2$ chance of being chosen at random. Unfortunately, (a) and (c) both give this number, so one would have a chance of $\frac{2}{5} = 0.4$ of getting a correct answer, and $\frac{2}{5} \neq \frac{1}{5}$. Answer (d), $\frac{4}{10}$, is actually equal to $\frac{2}{5}$, but only has a $\frac{1}{5}$ chance of being chosen. The probability of picking a correct answer can be 0 because that is answer (d), which also has a chance of $\frac{1}{5} \neq 0$ pf being chosen. The less said about answer (b), the better ... :-)

The problem is actually a self-referential paradox: the self-reference ("If you were to pick an answer to this question \dots "), combined with the given answers, makes all the possible answers wrong, including probability 0. \Box

While serving your sentence of computing the base 7 expansion of π by hand, your appeal goes forward. The court decides it will reduce your sentence to time served if you can answer the following question correctly:

How many letters are there in the answer to this question?

2. Well? [5]

SOLUTION. There are several possible answers. First, "four" is a possible answer because the word has 4 letters. Second, "0" is also a possible answer since the digit "0" has no letters. Third, Jennifer Lennick came up with one I haven't seen before, "exactly ten", which works because the phrase "exactly ten" uses 10 letters [and a space, which doesn't count as a letter]. (Thanks, Jennifer! :-) There may well be more possible answers out there ... \blacksquare

Remember: no one expects the Mathematical Inquisition!

* For writing that $\frac{1}{2} + \frac{1}{3} = \frac{1+1}{2+3} = \frac{2}{5}$. At least you didn't divide by 0 ... :-)