Mathematics 1550 H - Introduction to probability
 Trent University, Summer 2017

Assignment \#4

A Random Walk
Due on Wednesday, 19 July.
One fair coin has sides labelled U and D, and another fair coin has sides labelled L and R, respectively. A token is placed at $(0,0)$ on the Cartesian plane and the two coins are tossed simultaneously, over and over. After each toss, the token is moved as follows: up or down by 1 depending on whether the first coin came up U or D, and left or right by 1 depending on whether the second coin came up L or R. For example, if the token were at $(3,1)$ and the coins came up D and R, the token would be moved to $(3-1,1+1)=(2,2)$.

Let the random variable Y_{n} be the taxicab distance ${ }^{*}$ the token is from $(0,0)$ after $n \geq 0$ rolls and the consequent moves. It should be pretty obvious that $Y_{0}=0$: the token starts at $(0,0)$ and $n=0$ moves have taken place. After that it gets more interesting ...

1. What is $E\left(Y_{n}\right)$? Explain why as best you can. [5]
2. What is $V\left(Y_{n}\right)$? Explain why as best you can. [5]
[^0]
[^0]: * The taxicab distance from $(0,0)$ to (a, b) is $|a|+|b|$.

