Mathematics 1550 H - Introduction to probability

Trent University, Summer 2016
Monday, 11 July, 2016
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any three (3) of a-d. [12 $=3 \times 4$ each]
a. A fair coin is tossed ten times. What is the probability that at least two heads occur?
b. A hand of five cards is randomly drawn, without order or replacement, from a standard deck. What is the probability that you got exactly three of one kind and one of each of two other kinds in the hand?
c. Determine whether $f(t)=\left\{\begin{array}{ll}2 e^{2 t} & -\infty<t \leq 0 \\ 0 & \text { otherwise }\end{array}\right.$ is a probability density function.
d. A fair three-sided die with faces numbered 1 through 3 is rolled twice. What is the probability that the sum of the two rolls is even, given that the first roll was odd?
2. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. A baby's toy has four holes, numbered 1 through 4, and four balls, also numbered 1 through 4. If the baby randomly puts a ball into each hole, what is the probability that at least one ball ends up in a hole with the same number?
b. A fair coin is tossed: if it come up heads, a fair standard die is rolled once, but if the coin comes up tails, a fair four-sided die with faces numbered 1 through 4 is rolled once instead. Draw the complete tree diagram for this experiment and determine the probability that the die roll gives a number that is at least 3 .
c. Suppose A and B are independent events in a sample space Ω. Verify that A and \bar{B} are also independent.
3. Do any one (1) of \mathbf{a} or \mathbf{b}. [$8=1 \times 8 \mathrm{each}]$
a. Given the density function $g(t)=\left\{\begin{array}{cc}t^{-2} & 1 \leq t<\infty \\ 0 & t<1\end{array}\right.$, let $A=[0,2]$ and $B=[1,3]$ be events. Compute $P(A \mid B)$.
b. A five-card hand is randomly drawn, without order or replacement, from a standard deck. What is the probability that at least three of the cards in the hand are from the same suit?

$$
[\text { Total }=30]
$$

