Mathematics 1550 H - Introduction to probability
 Trent University, Summer 2016
 Quizzes

Quiz \#1. Wednesday, 22 June, 2016. [10 minutes]
A fair coin is tossed. If the coin comes up heads, a fair three-sided die with faces labelled 1,2 , and 3 , respectively, is rolled once; if the coin comes up tails, a fair three-sided die with faces labelled 2,3 , and 4 , respectively, is rolled once.

1. What are the sample space and the probability mass function for this experiment? [2]
2. Draw the complete tree diagram for this experiment. [1.5]
3. What is the probability that the die roll in the second stage of the experiment produced a 2? [1.5]

Quiz \#2. Monday, 27 June, 2016. [10 minutes]
Consider the function $f(t)=\left\{\begin{array}{cl}t & 0 \leq t \leq 1 \\ 2-t & 1 \leq t \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$.
0. Sketch the graph of $f(t)$. [1]

1. Verify that $f(t)$ is a probability density function. [2]
2. Compute $P\left(\left[\frac{1}{2}, \infty\right)\right)$. [2]

Quiz \#3. Wednesday, 29 June, 2016. [10 minutes]
A five-card hand is randomly drawn, all at once and without replacement, from a standard 52 -card deck.

1. What is the probability that the hand is a full house, consisting of three of one kind and two of another kind? [5]

Quiz \#4. Monday, 4 July, 2016. [10 minutes]

1. The four cards $A \diamond, A \diamond, A \boldsymbol{\phi}$, and $A \boldsymbol{\downarrow}$ are laid out for you in that order. You shuffle the four cards and lay them out again in a random order. What is the probability that none of the four cards ends up in the same position it was in when the hand was originally given to you? [5]

Quiz \#5. Wednesday, 6 July, 2016. [10 minutes]
A fair coin is tossed four times. Let A be the event that there were at least three heads, and let B be the event that at least one of the first two tosses was a head.

1. Determine whether A and B are independent or not. [3]
2. Compute $P(A \mid B)$. [2]

Quiz \#6. Wednesday, 13 July, 2016. [10 minutes]
An otherwise fair seven-sided die has single faces labelled $1,2,4$, and 5 , respectively, and three faces labelled 3 . The die is rolled once; let X be the number that comes up on the roll.

1. Compute the expected value, $E(X)$, of X. [2.5]
2. Compute the variance, $V(X)$, of X. [2.5]

Quiz \#7. Monday, 18 July, 2016. [10 minutes]
Suppose that the continuous random variable X has the probability density function

$$
f(t)=\left\{\begin{array}{cc}
\frac{3}{4}\left(1-t^{2}\right) & -1 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

1. Compute the expected value, $E(X)$, of X. [2.5]
2. Compute the variance, $V(X)$, of X. [2.5]

Quiz \#8. Wednesday, 20 July, 2016. [10 minutes]
Suppose the continuous random variable X has a normal distribution with expected value $\mu=10$ and standard deviation $\sigma=5$.

1. Compute $P(7 \leq X \leq 17)$. [3]
2. Find the value of c for which $P(X \leq c) \approx 0.7734$. [2]

Quiz \#9. Monday, 25 July, 2016. [however many minutes]
Suppose the discrete random variables X and Y are jointly distributed according to the following table:

$x \^{Y}$	-1	2
2	0.1	0.1
3	0.2	0.1
5	0.3	0.2

1. Compute the expected values $E(X)$ and $E(Y)$, variances $V(X)$ and $V(Y)$, and covariance $\operatorname{Cov}(X, Y)$ of X and Y. [5]

Quiz \#10. Wednesday, 27 July, 2016. [10 minutes]
Suppose X is a random variable with $X \geq 0$, expected value $E(X)=10$, and variance $V(X)=4$.

1. What can you say about $P(X<20)$ with the help of Markov's Inequality? [2]
2. What can you say about $P(X<20)$ with the help of Chebyshev's Inequality? [3]
