Mathematics 1550H – Introduction to probability

TRENT UNIVERSITY, Summer 2015

Distributions

The Short Form

Discrete

1. Discrete Uniform. n equally likely outcomes for some $n \geq 1$.

Probability function: $p(x) = P(X = x) = \frac{1}{x}$.

2. Bernoulli Trial. Two outcomes with probability of success p and of failure q = 1 - p. Probability function: p(x) = P(success) = p.

Variance: $\sigma^2 = V(X) = pa$ Expected value: $\mu = E(X) = p$

3. Binomial. n Bernoulli trials, with probability of success p and of failure q = 1 - p.

Probability function: $p(x) = P(x \text{ successes}) = \binom{n}{x} p^x q^{n-x}$, where $0 \le x \le n$. Expected value: $\mu = E(X) = np$ Variance: $\sigma^2 = V(X) = npq$

4. Geometric. Bernoulli trials repeated until the first success, with probability of success p and of failure q = 1 - p.

Probability function: $p(x) = P(\text{first success on } x \text{th trial}) = q^{x-1}p$ Expected value: $\mu = E(X) = \frac{1}{p}$ Variance: $\sigma^2 = V(X) = \frac{q}{n^2}$

5. Negative Binomial. Bernoulli trials repeated until the kth success, with probability of success p and of failure q = 1 - p.

Probability function: $p(x) = P(k \text{ success on } x \text{th trial}) = {x-1 \choose k-1} p^k q^{x-k}$

Expected value: $\mu = E(X) = \frac{k}{n}$ Variance: $\sigma^2 = V(X) = \frac{kq}{n^2}$

6. Poisson. Approximates the Binomial distribution when n is large.

Probability function: $p(x) = P() = \frac{e^{-\lambda} \lambda^x}{x!}$ Expected value: $\mu = E(X) = \lambda$ Variance: $\sigma^2 = V(X) = \lambda$

Continuous

7. Continuous Uniform.

Density function: $f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$

Expected value: $\mu = E(X) = \frac{a+b}{2}$ Variance: $\sigma^2 = V(X) = \frac{(b-a)^2}{12}$

8. Exponential.

Density function: $f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$ Expected value: $\mu = E(X) = \frac{1}{\lambda}$ Variance: $\sigma^2 = V(X) = \frac{1}{\lambda^2}$

over

9. Standard normal.

Standard normal.

Density function:
$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Expected value:
$$\mu = E(X) = 0$$
 Variance: $\sigma^2 = V(X) = 1$

10. Normal... with mean
$$\mu$$
 and standard deviation σ .

Density function: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$

Expected value: $E(X) = \mu$ Variance: $V(X) = \sigma^2$

Expected value:
$$E(X) = \mu$$
 Variance: $V(X) = \sigma^2$