Trent University, Summer 2015

MATH 1550H Test

Monday, 11 July, 2015
Time: 50 minutes
Name:
Solutions
Student Number: 0123456

Question Mark

Bonus
Total _ / 30

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

Bonus: For each $n \geq 1$, describe a shape that would give you a fair n-sided die. [1]
Solution. $n=1$: sphere; $n=2$: disk; $n \geq 3$: take a sphere, mark n equally spaced lines of longitude from pole to pole, shave away excess material by running a cutting edge from pole to pole along each pair of neighbouring marked lines of longitude. Here is a very crude sketch of the shape for $n=4$:

1. Do any three (3) of a-e. $[12=3 \times 4$ each $]$
a. A fair trihedral (3-sided) die (with faces numbered 1, 2 , and 3 , respectively) is rolled twice. Let Y be the sum of the two rolls. Compute the probability that Y is even.
b. How many 3 -letter sequences can be formed using the letters in the word "pastrami" if the two "a"s cannot be distinguished?
c. Five cards are simultaneously drawn at random from a standard 52-card deck. What is the probability of drawing a full house (3 of a kind plus 2 of a kind)?
d. A fair coin is tossed three times, and let X be the number of heads minus the number of tails. Find the probability function of X.
e. Suppose the continuous random variable W has a normal distribution with $\mu=2$ and $\sigma=3$. Compute $P(W \leq 5)$.

Solutions. a. Here is a table giving the sums of the possible rolls:

+	1	2	3
1	2	3	4
2	3	4	5
3	4	5	6

Note that there are $3 \cdot 3=9$ possible, equally likely, pairs of rolls. Using this fact and the table, we have:

$$
P(Y \text { is even })=P(1,1)+P(1,3)+P(2,2)+P(3,1)+P(3,3)=5 \cdot \frac{1}{9}=\frac{5}{9}
$$

b. Counting the two "a"s, there are eight letters in "pastrami." A 3-letter sequence using these letters could include two, one, or none of the "a"s, and we will count the number of possible sequences in each case separately.

First, if the 3-letter sequence includes both "a"s, it can include only one of the remaining six letters. There are $\binom{6}{1}=6$ ways to choose the remaining letter and $\binom{3}{1}=3$ ways to pick the position in the sequence that it occupies, for a total of $6 \cdot 3=18$ sequences that include both "a"s.

Second, if the 3-letter sequence includes just one "a," it must include two of the remaining six letters. There are $\binom{6}{2}=15$ ways to choose these two letters, $\binom{3}{2}=3$ ways to choose the two slots they occupy, and $2!=2$ ways to arrange them in these slots, for a total of $15 \cdot 3 \cdot 2=90$ sequences that include one "a."

Third, if the 3 -letter sequence includes neither "a," it must include three of the remaining six letter. There are $\binom{6}{3}=20$ ways to pick the three letters and $3!=6$ ways to arrange them in the three slots, for a total of $20 \cdot 6=120$ sequences that include no "a."

This gives a total of $18+90+120=228$ sequences with 3 -letters that can be formed using the letters in the word "pastrami" if the two "a"s cannot be distinguished.
c. Recall that in a standard deck there are thirteen kinds and four of each kind, one for each suit, for a total of 52 cards. The five cards in the hand are not drawn in order, so there are a total of $\binom{52}{5}=\frac{52!}{5!(52-5)!}=\frac{52!}{5!47!}=2598960$ equally likely possible hands. For
a full house, with three of one kind and two of another kind, there are $\binom{13}{1}=13$ ways to pick the kind for the three and $\binom{4}{3}=4$ ways to pick the three out of four of that kind, leaving $\binom{12}{1}=12$ ways to pick the kind for the two and $\binom{4}{2}=6$ ways to pick the two out of four of that kind. It follows that the probability of drawing a full house is:

$$
P(\text { full house })=\frac{\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}}{\binom{52}{5}}=\frac{13 \cdot 4 \cdot 12 \cdot 6}{2598960}=\binom{3744}{2598960}=\frac{6}{4165} \approx 0.0014
$$

d. The possible outcomes for X are $0-3=-3$ (i.e. TTT), $1-2=-1$ (i.e. HTT, THT, or $T T H$), $2-1=1$ (i.e. $H H T, H T H$, or $T H H$), and $3-0=3$ (i.e. $H H H$). Note that since the coin is fair, any sequence of three heads and/or tails has probability $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$. Thus the probability function of X is given by:

$$
\begin{aligned}
p(-3) & =P(X=-3)=P(T T T)=\frac{1}{8} \\
p(-1) & =P(X=-1)=P(H T T)+P(T H T)+P(T T H)=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8} \\
p(1) & =P(X=1)=P(H H T)+P(H T H)+P(T H H)=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8} \\
p(3) & =P(X=3)=P(H H H)=\frac{1}{8}
\end{aligned}
$$

Of course, $p(n)=0$ if $n \neq-3,-1,1$, or 3 .
e. If W has a normal distribution with $\mu=2$ and $\sigma=3$, then $Z=\frac{W-2}{3}$ has a standard normal distribution. Note that $W \leq 5$ exactly when $Z=\frac{W-2}{3} \leq \frac{5-2}{3}=\frac{3}{3}=1$, so $P(W \leq 5)=P(Z \leq 1)$. Looking up $P(Z \leq 1)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{1} e^{-x^{2} / 2} d x$ on the cumulative standard normal table then tells us that $P(W \leq 5)=P(Z \leq 1) \approx 0.8413$.
2. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. Compute $P(A \mid B)+P(\bar{A} \mid B)$, where A and B are events in a sample space Ω.
b. A fair die is rolled twice. Let A be the event that the two rolls give a different number and B be the event that the sum of the two rolls is even. Determine whether A and B are independent or not.
c. Let $f(x)=\left\{\begin{array}{ll}x^{-2} & x \geq 1 \\ 0 & x<1\end{array}\right.$ be the probability density function of the continuous random varable X. Let A be the event that $X \leq 2$ and let B be the event that $0 \leq X \leq 3$. Compute $P(A \mid B)$.

Solutions. a. Note that since $A \cap \bar{A}=\emptyset,(A \cap B) \cap(\bar{A} \cap B)=\emptyset$ too, and so $P((A \cap B) \cup(\bar{A} \cap B))=P(A \cap B)+P(\bar{A} \cap B)-P(\emptyset)=P(A \cap B)+P(\bar{A} \cap B)$ as $P(\emptyset)=0$. As we also have that $A \cup \bar{A}=\Omega$, it follows that

$$
\begin{aligned}
P(A \mid B)+P(\bar{A} \mid B) & =\frac{P(A \cap B)}{P(B)}+\frac{P(\bar{A} \cap B)}{P(B)}=\frac{P(A \cap B)+P(\bar{A} \cap B)}{P(B)} \\
& =\frac{P((A \cap B) \cup(\bar{A} \cap B))}{P(B)}=\frac{P((A \cup \bar{A}) \cap B)}{P(B)} \\
& =\frac{P(\Omega \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1 .
\end{aligned}
$$

b. We will take the brute-force approach. First, here is a table of the possible - and equally likely! - outcomes for the two rolls and whether the sum is odd (o) or even (e).

+	1	2	3	4	5	6
1	e	o	e	o	e	o
2	o	e	o	e	o	e
3	e	o	e	o	e	o
4	o	e	o	e	o	e
5	e	o	e	o	e	o
6	o	e	o	e	o	e

Note that there are $6 \cdot 6=36$ possible outcomes for the two rolls, 18 of which give an even sum and 18 or which give an odd sum.
A consists of the outcomes where the second roll is not the same as the first, i.e. the 30 outcomes not on the diagonal in the table. Thus $P(A)=\frac{30}{36}=\frac{5}{6}$.
B consists of all the outcomes for which the sum is even, so $P(B)=\frac{18}{36}=\frac{1}{2}$.
$A \cap B$ consists of all the outcomes not on the diagonal for which the sum is even. Since all six entries on the diagonal are e, there are $18-6=12$ outcomes in $A \cap B$, so $P(A \cap B)=\frac{12}{36}=\frac{1}{3}$.

As $P(A \cap B)=\frac{1}{3} \neq \frac{5}{12}=\frac{5}{6} \cdot \frac{1}{2}=P(A) P(B)$, the A and B are not independent.
c. $A=(-\infty, 2]$ and $B=[0,3]$, so $A \cap B=[0,2]$. By definition, we have

$$
\begin{aligned}
P(B) & =\int_{0}^{3} f(x) d x=\int_{0}^{1} 0 d x+\int_{1}^{3} x^{-2} d x=0+\left.\frac{x^{-2+1}}{-2+1}\right|_{1} ^{3} \\
& =-\left.x^{-1}\right|_{1} ^{3}=\left.\frac{-1}{x}\right|_{1} ^{3}=\frac{-1}{3}-\frac{-1}{1}=1-\frac{1}{3}=\frac{2}{3} \\
\text { and } \quad P(A \cap B) & =\int_{0}^{2} f(x) d x=\int_{0}^{1} 0 d x+\int_{1}^{2} x^{-2} d x=0+\left.\frac{x^{-2+1}}{-2+1}\right|_{1} ^{2} \\
& =-\left.x^{-1}\right|_{1} ^{2}=\left.\frac{-1}{x}\right|_{1} ^{2}=\frac{-1}{2}-\frac{-1}{1}=1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

It follows that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{2}}{\frac{2}{3}}=\frac{1}{2} \cdot \frac{3}{2}=\frac{3}{4}$.
3. Do any one (1) of a or b. [$8=1 \times 8$ each]
a. Suppose Z is a continuous random variable with an exponential distribution, so it has density function $h(z)=\left\{\begin{array}{ll}\lambda e^{-\lambda z} & z \geq 0 \\ 0 & z<0\end{array}\right.$ for some $\lambda>0$, and suppose $P(Z \leq 2)=\frac{1}{2}$. Determine λ.
b. A bin contains five blue and five red balls. If balls are drawn randomly, without replacement, from the bin until a second ball of the same colour as the first one drawn appears, what is probability that a total of at most five balls will be drawn?
Solutions. a. If Z is a continuous random variable with an exponential distribution with parameter λ, then, by definition,

$$
\begin{aligned}
P(Z \leq 2) & =\int_{\text {infty }}^{2} h(z) d z=\int_{-\infty}^{0} 0 d z+\int_{0}^{2} \lambda e^{-\lambda z} d z \quad \begin{array}{l}
\text { Let } u=-\lambda z, \text { so } d u=-\lambda d z \\
\text { and } \lambda d z=(-1) d u .
\end{array} \\
& =0+\int_{z=0}^{z=2} e^{u}(-1) d u=\left.(-1) e^{u}\right|_{z=0} ^{z=2}=\left.(-1) e^{-\lambda z}\right|_{0} ^{2} \\
& =(-1) e^{-\lambda \cdot 2}-(-1) e^{-\lambda \cdot 0}=-e^{-2 \lambda}+e^{0}=1-e^{-2 \lambda} .
\end{aligned}
$$

It follows that we need to solve the equation $1-e^{-2 \lambda}=P(Z \leq 2)=\frac{1}{2}$ for λ :

$$
\begin{aligned}
1-e^{-2 \lambda}=\frac{1}{2} & \Longrightarrow e^{-2 \lambda}=\frac{1}{2} \Longrightarrow-2 \lambda=\ln \left(\frac{1}{2}\right)=\ln \left(2^{-1}\right)=(-1) \ln (2) \\
& \Longrightarrow \lambda=\frac{(-1) \ln (2)}{-2}=\frac{1}{2} \ln (2)=\ln \left(2^{1 / 2}\right)=\ln (\sqrt{2}) \approx 0.3466
\end{aligned}
$$

b. Consider how more than five balls might be drawn if one draws without replacement until a second ball of the same colour as the first drawn turns up. If the first ball drawn was blue, we might get the sequence $B R R R R B$ of length 6 or the sequence $B R R R R R B$ of length 7 ; we cannot get a longer sequence because there are only 5 red balls in the bin. Similarly, if the first ball drawn was red, $R B B B B R$ and $R B B B B B R$ are the only possibilities. The probability of getting a given colour of ball on a given draw is just the proportion of the number of balls of that colour among the balls remaining in the bin. It follows that

$$
\begin{aligned}
P(>5 \text { balls })= & P(B R R R R B)+P(B R R R R R B)+P(R B B B B R)+P(R B B B B B R) \\
= & \frac{5}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{4}{5}+\frac{5}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} \cdot \frac{4}{4} \\
& +\frac{5}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{4}{5}+\frac{5}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} \cdot \frac{4}{4} \\
= & \frac{1}{63}+\frac{1}{252}+\frac{1}{63}+\frac{1}{252}=\frac{10}{252}=\frac{5}{126} \approx 0.0397
\end{aligned}
$$

