Trent University, Summer 2015

MATH 1550H Test
Monday, 11 July, 2015
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any three (3) of a-e. $[12=3 \times 4$ each $]$
a. A fair trihedral (3-sided) die (with faces numbered 1, 2 , and 3 , respectively) is rolled twice. Let X be the sum of the two rolls. Compute the probability that X is even.
b. How many 3 -letter sequences can be formed using the letters in the word "pastrami" if the two "a"s cannot be distinguished?
c. Five cards are simultaneously drawn at random from a standard 52-card deck. What is the probability of drawing a full house (3 of a kind plus 2 of a kind)?
d. A fair coin is tossed three times, and let X be the number of heads minus the number of tails. Find the probability function of X.
e. Suppose the continuous random variable W has a normal distribution with $\mu=2$ and $\sigma=3$. Compute $P(W \leq 5)$.
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Compute $P(A \mid B)+P(\bar{A} \mid B)$, where A and B are events in a sample space Ω.
b. A fair die is rolled twice. Let A be the event that the two rolls give a different number and B be the event that the sum of the two rolls is even. Determine whether A and B are independent or not.
c. Let $f(x)=\left\{\begin{array}{ll}x^{-2} & x \geq 1 \\ 0 & x<1\end{array}\right.$ be the probability density function of the continuous random varable X. Let A be the event that $X \leq 2$ and let B be the event that $0 \leq X \leq 3$. Compute $P(A \mid B)$.
3. Do any one (1) of \mathbf{a} or \mathbf{b}. $[8=1 \times 8$ each $]$
a. Suppose Z is a continuous random variable with an exponential distribution, so it has density function $h(z)=\left\{\begin{array}{ll}\lambda e^{-\lambda z} & z \geq 0 \\ 0 & z<0\end{array}\right.$ for some $\lambda>0$, and suppose $P(Z \leq 2)=\frac{1}{2}$. Determine λ.
b. A bin contains five blue and five red balls. If balls are drawn randomly, without replacement, from the bin until a second ball of the same colour as the first one drawn appears, what is probability that a total of at most five balls will be drawn?

$$
[\text { Total }=30]
$$

Bonus: For each $n \geq 1$, describe a shape that would give you a fair n-sided die. [1]

