Mathematics 1550 H - Introduction to probability
 Trent University, Summer 2014

Solutions to Assignment \#5 Can we have Tchebysheff's equality?

Recall from class and the textbook that the following is true:
Tchebysheff's Theorem. Suppose X is a random variable, discrete or continuous, with expected value $E(X)=\mu$ and standard deviation $\sigma(X)=\sigma$. Then, for any real number $k>0, P\left(|X-\mu|<k \sigma^{2}\right) \geq 1-\frac{1}{k^{2}}$.

Your task in this assignment, should you choose to accept it, will be to see if there are, under reasonable conditions, random variables X for which we actually get an equality instead, i.e. $P\left(|X-\mu|<k \sigma^{2}\right)=1-\frac{1}{k^{2}}$.

Do one (1) of problems $\mathbf{1}$ or $\mathbf{2}$ below. To keep things relatively simple, we will assume in both 1 and 2 that $\mu=0$ and $\sigma=1$, and also that X is symmetric about $\mu=0$, i.e. that $P(0 \leq X \leq x)=P(-x \leq X \leq 0)$ for all $x \geq 0$.

1. Is there a discrete random variable X, satisfying the assumptions above, which takes on (not necessarily positive) integer values such that $P(|X|<k)=1-\frac{1}{k^{2}}$ for every positive integer k ? If so, give an example; if not, explain why not. [10]
Solution. There is such a random variable. In fact, it turns out there is only possible probability function $p(k)=P(X=k)$ (where $k \in \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$) for such a variable, given the stated conditions it is supposed to satisfy:

- $p(0)=P(X=0)=P(|X|<1)=1-\frac{1}{1^{2}}=1-1=0$.
- $p(-1)+p(0)+p(-1)=P(|X|<2)=1-\frac{1}{2^{2}}=1-\frac{1}{4}=\frac{3}{4}$, and since $p(0)=0$ and $p(-1)=p(1)$ (because of the requirement that X be symmetric), it follows that $p(-1)=p(1)=\frac{3}{8}$.
- $p(-2)+p(-1)+p(0)+p(-1)+p(2)=P(|X|<3)=1-\frac{1}{3^{2}}=1-\frac{1}{9}=\frac{8}{9}$, so $p(-2)+p(2)=P(|X|<3)-P(|X|<2)=\frac{8}{9}-\frac{3}{4}=\frac{5}{36}$, and so, since $p(-2)=p(2)$, $p(-2)=p(2)=\frac{5}{72}$.
- In general, if $k>0, p(-k)+\cdots+p(k)=P(|X|<k+1)=1-\frac{1}{(k+1)^{2}}$, so $p(-k)+p(k)=$ $P(|X|<k+1)-P(|X|<k)=\left[1-\frac{1}{(k+1)^{2}}\right]-\left[1-\frac{1}{k^{2}}\right]=\frac{1}{k^{2}}-\frac{1}{(k+1)^{2}}=\frac{(k+1)^{2}-k^{2}}{k^{2}(k+1)^{2}}=$ $\frac{k^{2}+2 k+1-k^{2}}{k^{2}(k+1)^{2}}=\frac{2 k+1}{k^{2}(k+1)^{2}}$. Since $p(-k)=p(k)$, it follows that $p(-k)=p(k)=\frac{2 k+1}{2 k^{2}(k+1)^{2}}$.
Obviously, we must have $p(x)=0$ whenever $x \notin \mathbb{Z}$. Thus the probability function of a discrete random variable with the given properties must be:

$$
p(x)=\left\{\begin{array}{cl}
\frac{2 k+1}{2 k^{2}(k+1)^{2}} & x= \pm k \text { for an integer } k>0 \\
0 & x=0 \text { or } x \text { is not an integer }
\end{array}\right.
$$

It remains to check that this is indeed a probability function. First, it is obvious from its definition that $p(x) \geq 0$ for all x. Second, we need to check that the total probability is 1 , that is, that $\sum_{x} p(x)=1$:

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} p(k) & =p(0)+\sum_{k=1}^{\infty}[p(-k)+p(k)]=0+\sum_{k=1}^{\infty}\left[\frac{2 k+1}{2 k^{2}(k+1)^{2}}+\frac{2 k+1}{2 k^{2}(k+1)^{2}}\right] \\
& =\sum_{k=1}^{\infty} 2 \cdot \frac{2 k+1}{2 k^{2}(k+1)^{2}}=\sum_{k=1}^{\infty} \frac{2 k+1}{k^{2}(k+1)^{2}}=\sum_{k=1}^{\infty}\left[\frac{1}{k^{2}}-\frac{1}{(k+1)^{2}}\right] \\
& =\left[\frac{1}{1^{2}}-\frac{1}{(1+1)^{2}}\right]+\left[\frac{1}{2^{2}}-\frac{1}{(2+1)^{2}}\right]+\left[\frac{1}{3^{2}}-\frac{1}{(3+1)^{2}}\right]+\cdots \\
& =1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+\left(-\frac{1}{16}+\frac{1}{16}\right) \cdots=1+0+0+\cdots=1
\end{aligned}
$$

Thus $p(x)$ satisfies the definition of a probability function.
2. Is there a continuous random variable X, satisfying the assumptions above, such that $P(|X|<k)=1-\frac{1}{k^{2}}$ for every positive real number k ? If so, give an example; if not, explain why not. [10]
Solution. There is no such continuous random variable. Suppose, for example, that $k=\frac{1}{2}$. Then we would have to have $P\left(|X|<\frac{1}{2}\right)=1-\frac{1}{\left(\frac{1}{2}\right)^{2}}=1-4=-3$, which would violate the requirement that probabilities be ≥ 0.

Note: Interesting how essentially the same requirements are possible to satisfy for a discrete random variable, but not a continuous one. One could make the problem more interesting in the continuous case by requiring that $P(|X|<k)=1-\frac{1}{k^{2}}$ only for real numbers $k \geq 1$. (You figure out what happens ... :-)

