Mathematics 1550 H - Introduction to probability

Trent University, Summer 2014
Assignment \#4
Unexpected Value!?
The function $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ is an unfortunate one for those who hoped continuous random variables would behave themselves. On the one hand:

1. Verify that $f(x)$ is a probability density function. [5]

Solution. Since $x^{2} \geq 0$ for all $x \in \mathbb{R}, \pi\left(1+x^{2}\right)>0$ for all $x \in \mathbb{R}$. It follows from this that $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ is defined and continuous, and hence integrable, for all $l x \in \mathbb{R}$. Finally,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{\pi\left(1+x^{2}\right)} d x & =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\frac{1}{\pi} \int_{-\infty}^{0} \frac{1}{1+x^{2}} d x+\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{1+x^{2}} d x \\
& =\left[\lim _{t \rightarrow-\infty} \frac{1}{\pi} \int_{t}^{0} \frac{1}{1+x^{2}} d x\right]+\left[\lim _{s \rightarrow \infty} \frac{1}{\pi} \int_{0}^{s} \frac{1}{1+x^{2}} d x\right] \\
& =\left[\left.\lim _{t \rightarrow-\infty} \frac{1}{\pi} \arctan (x)\right|_{t} ^{0}\right]+\left[\left.\lim _{s \rightarrow \infty} \frac{1}{\pi} \arctan (x)\right|_{0} ^{s}\right] \\
& =\frac{1}{\pi} \lim _{t \rightarrow-\infty}(\arctan (0)-\arctan (t))+\frac{1}{\pi} \lim _{s \rightarrow \infty}(\arctan (s)-\arctan (0)) \\
& =-\frac{1}{\pi} \lim _{t \rightarrow-\infty} \arctan (t)+\frac{1}{\pi} \lim _{s \rightarrow \infty} \arctan (s) \quad(\text { since } \arctan (0)=0) \\
& =-\frac{1}{\pi}\left(-\frac{\pi}{2}\right)+\frac{1}{\pi} \cdot \frac{\pi}{2}=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

so $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ is a continuous probability density function.
2. Show that if the random variable X has $f(x)$ as its probability density function, then X does not have a well-defined expected value. [5]
Hint: Try computing $E(X)$ and see if you actually get a number ...
Solution. We'll follow the hint:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} \frac{x}{\pi\left(1+x^{2}\right)} d x=\frac{1}{\pi} \int_{-\infty}^{0} \frac{x}{1+x^{2}} d x+\frac{1}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} d x \\
& =\left[\lim _{t \rightarrow-\infty} \frac{1}{\pi} \int_{t}^{0} \frac{x}{1+x^{2}} d x\right]+\left[\lim _{s \rightarrow \infty} \frac{1}{\pi} \int_{0}^{s} \frac{x}{1+x^{2}} d x\right] \quad \begin{array}{l}
\text { We'll substitute } \\
u=1+x^{2}, \text { so }
\end{array} \\
& d u=2 x d x \text { and thus } \frac{1}{2} d u=x d x, \text { and } \begin{array}{cc}
x & t \\
u 1+t^{2} \\
1 & s \\
1+s^{2} .
\end{array} \\
& =\left[\lim _{t \rightarrow-\infty} \frac{1}{\pi} \int_{1+t^{2}}^{1} \frac{1}{u} \cdot \frac{1}{2} d u\right]+\left[\lim _{s \rightarrow \infty} \frac{1}{\pi} \int_{1}^{1+s^{2}} \frac{1}{u} \cdot \frac{1}{2} d u\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left.\frac{1}{2 \pi} \lim _{t \rightarrow-\infty} \ln (u)\right|_{1+t^{2}} ^{1}\right]+\left[\left.\frac{1}{2 \pi} \lim _{s \rightarrow \infty} \ln (u)\right|_{1} ^{1+s^{2}}\right] \\
& =\frac{1}{2 \pi}\left[\lim _{t \rightarrow-\infty}\left(\ln (1)-\ln \left(1+t^{2}\right)\right)\right]+\frac{1}{2 \pi}\left[\lim _{s \rightarrow \infty}\left(\ln \left(1+s^{2}\right)-\ln (1)\right)\right] \\
& =\frac{1}{2 \pi}\left[-\lim _{t \rightarrow-\infty} \ln \left(1+t^{2}\right)\right]+\frac{1}{2 \pi}\left[\lim _{s \rightarrow \infty} \ln \left(1+s^{2}\right)\right] \quad(\text { Since } \ln (1)=0 .)
\end{aligned}
$$

At this point we run into an insuperable problem: as $t \rightarrow-\infty,\left(1+t^{2}\right) \rightarrow \infty$, so $\lim _{t \rightarrow-\infty} \ln \left(1+t^{2}\right)=\infty$, and as $s \rightarrow \infty,\left(1+s^{2}\right) \rightarrow \infty$, so $\lim _{s \rightarrow \infty} \ln \left(1+s^{2}\right)=\infty$, too. That is, we do not get a real number for $E(X)$, just a difference of infinities, which is indeterminate. Hence $E(X)$ is not well-defined.

Bonus. Find a function $g(x)$ such that a random variable X which has $g(x)$ as its probability density function does have a well-defined expected value $E(X)$, but does not have a well-defined variance $V(X)$. [2]

Solution. Try computing $E(X)$ and $V(X)$ if X has the probability density function $g(x)=\left\{\begin{array}{ll}\frac{2}{x^{3}} & x \geq 1 \\ 0 & x<1\end{array}\right.$, and see what happens \ldots

