
Mathematics 1550H – Introduction to probability
Trent University, Summer 2014

Assignment #4
Unexpected Value!?

The function f(x) =
1

π (1 + x2)
is an unfortunate one for those who hoped continuous

random variables would behave themselves. On the one hand:

1. Verify that f(x) is a probability density function. [5]

Solution. Since x2 ≥ 0 for all x ∈ R, π
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> 0 for all x ∈ R. It follows from this
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is defined and continuous, and hence integrable, for all l x ∈ R.
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so f(x) =
1

π (1 + x2)
is a continuous probability density function. �

2. Show that if the random variable X has f(x) as its probability density function, then
X does not have a well-defined expected value. [5]

Hint: Try computing E(X) and see if you actually get a number . . .

Solution. We’ll follow the hint:
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We’ll substitute
u = 1 + x2, so

du = 2x dx and thus
1
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(Since ln(1) = 0.)

At this point we run into an insuperable problem: as t → −∞,
(
1 + t2

)
→ ∞, so

lim
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ln
(
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= ∞, and as s → ∞,

(
1 + s2

)
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= ∞, too.

That is, we do not get a real number for E(X), just a difference of infinities, which is
indeterminate. Hence E(X) is not well-defined. �

Bonus. Find a function g(x) such that a random variable X which has g(x) as its prob-
ability density function does have a well-defined expected value E(X), but does
not have a well-defined variance V (X). [2]

Solution. Try computing E(X) and V (X) if X has the probability density function

g(x) =

{ 2

x3
x ≥ 1

0 x < 1
, and see what happens . . . �
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