Mathematics 1550 H - Introduction to probability

Trent University, Summer 2014
Solutions to Assignment \#2 Deals

A hand of five cards is dealt - randomly, one card at a time, without replacement - from each of two standard decks of 52 cards.

1. What is the probability that the two hands have exactly one card in common? [3]

Solution. The underlying sample space S consists of all pairs of hands, each drawn randomly, in order without replacement, from a separate deck. This means that there are $n(S)=P_{5}^{52} \cdot P_{5}^{52}=$ $\frac{52!}{(52-5)!} \cdot \frac{52!}{(52-5)!}=(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48)$ possible outcomes (i.e. pairs of hands) in S, all equally likely.

Let A be the event that the two hands have exactly one card in common. To count the number of outcomes in A, we need to combine the numbers of ways

- to pick the card they have in common, $P_{1}^{52}=52$,
- to pick the position that card occupies in the first hand, $P_{1}^{5}=5$,
- to pick the position that card occupies in the second hand, $P_{1}^{5}=5$,
- to pick the remaining four cards in the first hand, $P_{4}^{51}=51 \cdot 50 \cdot 49 \cdot 48$, and
- to pick the remaining four cards in the second hand, which must be different from the remaining four in the first hand, $P_{4}^{47}=47 \cdot 46 \cdot 45 \cdot 44$.
Since these choices are independent, except for the points noted above, there are $n(A)=52 \cdot 5 \cdot 5$. $(51 \cdot 50 \cdot 49 \cdot 48) \cdot(47 \cdot 46 \cdot 45 \cdot 44)$ outcomes in A.

It follows that

$$
\begin{aligned}
P(A) & =\frac{n(A)}{n(S)}=\frac{52 \cdot 5 \cdot 5 \cdot(51 \cdot 50 \cdot 49 \cdot 48) \cdot(47 \cdot 46 \cdot 45 \cdot 44)}{(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48)} \\
& =\frac{5 \cdot 5 \cdot 47 \cdot 46 \cdot 45 \cdot 44}{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}=\frac{59455}{173264} \approx 0.3433146874
\end{aligned}
$$

2. What is the probability that the two hands have at least one card in common? [3]

Solution. Let B be the event that the two hands have at least one card in common. Rather than work out $P(B)$ directly, we will work out $P(\bar{B})$, the probability that the two hands have no cards in common, first.
\bar{B} consists of all pairs of hands in which the two hands have no cards in common. There are $P_{5}^{52}=\frac{52!}{(52-5)!}=52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$ ways to pick the first hand. This leaves only $52-5=47$ cards which may be used for the second hand, so there are $P_{5}^{47}=\frac{47!}{(47-5)!}=47 \cdot 46 \cdot 45 \cdot 44 \cdot 43$ ways to pick the second hand. Thus $n(\bar{B})=P_{5}^{52} \cdot P_{5}^{47}=(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot(47 \cdot 46 \cdot 45 \cdot 44 \cdot 43)$, and it follows that

$$
\begin{aligned}
P(\bar{B}) & =\frac{n(\bar{B})}{n(S)}=\frac{(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot(47 \cdot 46 \cdot 45 \cdot 44 \cdot 43)}{(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48)} \\
& =\frac{47 \cdot 46 \cdot 45 \cdot 44 \cdot 43}{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}=\frac{511313}{866320} \approx 0.5902126235
\end{aligned}
$$

Hence $P(B)=1-P(\bar{B})=\frac{355007}{866320} \approx 0.4097873765$.
3. Determine whether the events of "the two hands have at least one card in common" and "the first hand is all $\mathrm{Ms}^{\prime \prime}$ are independent or not. [4]
Solution. Let B be the event that the two hands have at least one card in common and C be the event that the first hand is all ς_{s}. By definition, B and C are independent if $P(B C)=P(B) \cdot P(C)$. We know from the answer to 2 above that $P(B)=\frac{355007}{866320} \approx 0.4097873765$, so we will compute $P(C)$ and $P(B C)$ and then check to see if the defining equation holds.
C consists of all pairs of hands in which the first hand is all φ_{s}. Since there are thirteen cards in each suite, there are $P_{5}^{13}=\frac{13!}{(13-5)!}=13 \cdot 12 \cdot 11 \cdot 10 \cdot 9$ ways to pick the first hand, and $P_{5}^{52}=\frac{52!}{(52-5)!}=52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$ ways to pick the second hand (as there are no restrictions on the second hand here). Thus $n(C)=P_{5}^{13} \cdot P_{5}^{52}=(13 \cdot 12 \cdot 11 \cdot 10 \cdot 9) \cdot(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48)$, and so it follows that

$$
\begin{aligned}
P(C) & =\frac{n(C)}{n(S)}=\frac{(13 \cdot 12 \cdot 11 \cdot 10 \cdot 9) \cdot(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48)}{(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48)} \\
& =\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}=\frac{33}{66640} \approx 0.0004951981 .
\end{aligned}
$$

Rather than work out $P(B C)$ directly, we will work out $P(\bar{B} C)$, the probability that the two hands have no cards in common and that the first hand is all Γ_{s}, first. as above, there are $P_{5}^{13}=$ $\frac{13!}{(13-5)!}=13 \cdot 12 \cdot 11 \cdot 10 \cdot 9$ ways to pick the first hand, and, as in the solution to 2 , this leaves only $52-5=47$ cards which may be used for the second hand, so there are $P_{5}^{47}=\frac{47!}{(47-5)!}=47 \cdot 46 \cdot 45 \cdot 44 \cdot 43$ ways to pick the second hand. Thus $n(\bar{B} C)=P_{5}^{13} \cdot P_{5}^{47}=(13 \cdot 12 \cdot 11 \cdot 10 \cdot 9) \cdot(47 \cdot 46 \cdot 45 \cdot 44 \cdot 43)$, and it follows that

$$
\begin{aligned}
P(\bar{B} C) & =\frac{n(\bar{B} C)}{n(S)}=\frac{(13 \cdot 12 \cdot 11 \cdot 10 \cdot 9) \cdot(47 \cdot 46 \cdot 45 \cdot 44 \cdot 43)}{(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48) \cdot(52 \cdot 51 \cdot 50 \cdot 49 \cdot 48)} \\
& =\frac{16873329}{57731564800} \approx 0.0002922722 .
\end{aligned}
$$

Since $B C$ and $\bar{B} C$ partition C, we have $P(C)=P(B C)+P(\bar{B} C)$, and so $P(B C)=P(C)-$ $P(\bar{B} C) \approx 0.0004951981-0.0002922722=0.0002029259$.

As $P(B) \cdot P(C) \approx 0.4097873765 \cdot 0.0004951981 \approx 0.0002029259 \approx P(B C)$, it is thus very likely that B and C are independent events. (To be really sure, we should work everything out exactly, but the fractional arithmetic is just a bit painful ... :-)

