Mathematics 1550H – Introduction to probability

TRENT UNIVERSITY, Summer 2014

FINAL EXAMINATION Friday, 6 August, 2014

Time: 3 hours

Brought to you by Стефан Біланюк.

[Subtotal = 70/100]

Instructions: Do both of parts \heartsuit and \diamondsuit , and, if you wish, part \clubsuit . Show all your work and simplify answers as much as practicable. *If in doubt about something*, **ask!**

Aids: Calculator; one $8.5'' \times 11''$ or A4 aid sheet; standard normal table; $\leq 10^{10}!$ neurons.

Part \heartsuit . Do all of 1–5.

- 1. A fair standard six-sided die is rolled four times. Let X be the number of times that odd-numbered faces come up, and let Y be the sum of the odd-numbered faces that come up.
 - **a.** What is the probability function of X? [5]
 - **b.** Compute E(X) and Var(X). [5]
 - c. Without computing it from scratch, what should E(Y) be? Explain why. [5]
- **2.** A continuous random variable Z is uniformly distributed between 0 and 3.
 - **a.** What is the expected value of Z^2 ? [10]
 - **b.** What is the probability that Z^2 is at most 8? [5]
- **3.** A hand of five cards is drawn simultaneously (*i.e.* without order or replacement) from a standard 52-card deck.
 - **a.** What is the probability that the hand is a "full house," that is, that it includes a pair of one kind and a triple of another kind? [8]
 - **b.** What is the probability that all the cards in the hand are of different kinds? [7]
- 4. Suppose Y is a normally distributed continuous random variable with expected value $\mu = 3$ and standard deviation $\sigma = 2$.
 - **a.** Compute $P(Y \ge 0)$ using your standard normal table. [5]
 - **b.** Find the median of Y, *i.e.* the number m such that $P(Y \le m) = 0.5$, with the help of your standard normal table. [5]
- 5. A fair coin is tossed, and then tossed some more until it comes up again with whatever face came up on the first toss.
 - **a.** What are the sample space and probability function? [7]
 - **b.** Let A be the event that no more than three tosses took place and let B be the event that the second toss was a head. Determine whether the events A and B are independent or not. [8]

[Parts \diamondsuit and \clubsuit are on page 2.]

Part \diamondsuit. Do any *two* (2) of **6–10**.

- **6.** Suppose Z is a continuous random variable with a standard normal distribution.
 - **a.** Compute P(-2 < Z < 2) using your standard normal table. [5]
 - **b.** Use Tschebysheff's Inequality to show that $P(-2 \le Z < 2) \ge \frac{3}{4}$. [5]
 - c. Without computing the relevant integral, explain why E(Z) = 0. [5]
- 7. A fair standard six-sided die is rolled twice.
 - **a.** What is the probability of a sum of 6 for the two rolls, given that the two rolls gave different numbers? [7]
 - **b.** Determine whether the events that the two rolls are different and that the sum of the two rolls is 7 are independent or not. [8]
- 8. Suppose the discrete random variables X and Y are jointly distributed according to the following table:

$X \setminus Y$	0	1	2
1	0.2	0.1	0.1
2	0.1	0	0.1
3	0.1	0.1	02

- **a.** Compute E(X), E(Y), V(X), V(Y), and cov(X,Y). [10]
- **b.** Let U = X 2Y. Compute E(U) and V(U). [5]
- **9.** Suppose A, B, and C are events such that P(ABC) = P(A)P(B)P(C). Does it follow that the first two events, A and B, are independent? Show that it does or give an example to show that it doesn't. [15]
- **10.** Let $f(y) = \begin{cases} \frac{1}{3}y^2 & -1 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$ be the probability density function of the continuous random variable Y.
 - **a.** Verify that f(y) is indeed a probability density function. [7]
 - **b.** Compute E(Y) and V(Y). [8]

|Total = 100|

Part **\$**. Bonus!

- K. If two fair standard six-sided dice are rolled together three times, what is the probability that the two dice will match (*i.e.* have the same number come up) on one of the three rolls? [1.5]
- **Q.** Write an original little poem about probability or mathematics in general. [1.5]

I HOPE THIS WENT BETTER THAN THE TEST DID. :-) ENJOY THE REST OF THE SUMMER!