Mathematics 1550 H - Introduction to probability
 Trent University, Summer 2014
 Assignment \#5
 Can we have Tchebysheff's equality?
 Due on Monday, 28 July, 2014.

Recall from class and the textbook that the following is true:
Tchebysheff's Theorem. Suppose X is a random variable, discrete or continuous, with expected value $E(X)=\mu$ and standard deviation $\sigma(X)=\sigma$. Then, for any real number $k>0, P\left(|X-\mu|<k \sigma^{2}\right) \geq 1-\frac{1}{k^{2}}$.

Your task in this assignment, should you choose to accept it, will be to see if there are, under reasonable conditions, random variables X for which we actually get an equality instead, i.e. $P\left(|X-\mu|<k \sigma^{2}\right)=1-\frac{1}{k^{2}}$.

Do one (1) of problems $\mathbf{1}$ or $\mathbf{2}$ below. To keep things relatively simple, we will assume in both 1 and 2 that $\mu=0$ and $\sigma=1$, and also that X is symmetric about $\mu=0$, i.e. that $P(0 \leq X \leq x)=P(-x \leq X \leq 0)$ for all $x \geq 0$.

1. Is there a discrete random variable X, satisfying the assumptions above, which takes on (not necessarily positive) integer values such that $P(|X|<k)=1-\frac{1}{k^{2}}$ for every positive integer k ? If so, give an example; if not, explain why not. [10]
2. Is there a continuous random variable X, satisfying the assumptions above, such that $P(|X|<k)=1-\frac{1}{k^{2}}$ for every positive real number k ? If so, give an example; if not, explain why not. [10]
