# Mathematics $\mathbf{1 5 5 0 H}$ - Introduction to probability Trent University, Summer 2014 <br> Assignment \#4 <br> Unexpected Value!? <br> Due on Monday, 21 July, 2014. 

The function $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ is an unfortunate one for those who hoped continuous random variables would behave themselves. On the one hand:

1. Verify that $f(x)$ is a probability density function. [5]
2. Show that if the random variable $X$ has $f(x)$ as its probability density function, then $X$ does not have a well-defined expected value. [5]
Hint: Try computing $E(X)$ and see if you actually get a number ...
Bonus. Find a function $g(x)$ such that a random variable $X$ which has $g(x)$ as its probability density function does have a well-defined expected value $E(X)$, but does not have a well-defined variance $V(X)$. [2]
