Mathematics 1550 H - Introduction to probability
 Trent University, Summer 2014
 Assignment \#3
 Simulations
 Due on Wednesday, 16 July, 2014.

A common problem in probability courses is to figure out how to use a possibly biased coin to simulate a fair coin. (See, for example, Assignment \#3 from the Summer 2013 edition of MATH $1550 \mathrm{H} \ldots$...) The basic idea behind the usual solution to this problem can be used to do a little more.

1. Suppose you are stuck on a desert island with npthing but a fair coin, but you feel the urge to play a game that requires you to roll a fair (standard six-sided) die. How can you simulate rolling a die using the coin you do have? [3]
2. Suppose you are (still!) stuck on the desert island, but you get the urge to play a game that requires tossing a biased coin, with $P(H)=\frac{13}{20}=0.65$ and $P(T)=\frac{7}{20}=0.35$. How can you simulate tossing such an unfair coin using the fair coin you do have? [3]
3. In general, suppose (a complete description of) a random process with a finite sample space S and probabilities, not necessarily equal, for all the outcomes in S are given. Can one simulate this process by tossing a fair coin? Just when and why is it possible to do so, and, when one can, how? [4]
