Mathematics 1550 H - Introduction to probability
 Trent University, Summer 2013
 Assignment \#3
 Fairness from bias

1. You are given a biased coin which comes up heads $\frac{2}{3}$ of the time and tails $\frac{1}{3}$ of the time. What you would like to have is a fair coin. How can you use the biased coin to deliver an event which has a probability of $\frac{1}{2}$? (You may toss the biased coin as many times as necessary for whatever process you devise.) [10]

Solution. Here's the basic process (apparently due to John von Neumann) for simulating a fair coin with a biased coin:

1. Toss the biased coin twice.
2. If the result of step 1 is

HT, then return "head";
TH, then return "tail";
otherwise, repeat step 1.
Since $P($ head $)=P(H T)=\frac{2}{3} \cdot \frac{1}{3}=\frac{2}{9}=\frac{1}{3} \cdot \frac{2}{3}=P(T H)=P($ tail $), P($ head \mid head or tail $)=P($ tail \mid head or tail $)=\frac{1}{2} \cdot\left(e, g . P(\right.$ head \mid head or tail $)=\frac{P(\text { head })}{P(\text { head or tail })}=$ $\left.\frac{P(\text { head })}{P(\text { head })+P(\text { tail })}=\frac{\frac{2}{9}}{\frac{2}{9}+\frac{2}{9}}=\frac{1}{2}\right)$

There is one potential glitch here: it may take a few tries before you get HT or TH in a pair of tosses, especially if the coin is greatly biased. In principle, you could be tossing forever, though that has probability 0 :

$$
P(n \text { double tosses with HH or TT each time })=\left(\frac{5}{9}\right)^{n}
$$

which has a limit of 0 as $n \rightarrow \infty$ since $\left|\frac{5}{9}\right|<1$.

