
Mathematics 1550H – Introduction to probability
Trent University, Summer 2013

Solutions to the Final Examination
Tuesday, 6 August, 2013

Time: 3 hours Brought to you by Stefan B�lan�k.

Instructions: Do both of parts H and T, and, if you wish, part E. Show all your work
and simplify answers as much as practicable. If in doubt about something, ask!

Aids: Calculator; one 8.5′′ × 11′′ or A4 aid sheet; ≤ Γ(11)Γ(11) neurons.

Please keep in mind that most of these problems can be solved in different ways, so
your solutions may be correct even if they doesn’t look like the ones given below. Not to
mention the probability of errors in the solutions given below. ( Quick! Compute the
expected value of the number of errors in the solutions, assuming that . . . )

Part H. Do all of 1–5. [Subtotal = 70/100]

1. Five cards are drawn at random, one at a time and without replacement, from a
standard 52-card deck.

a. What are the sample space and the probability of each outcome? [4]

b. Let F be the event that all five belong to the same suite and let A be the event
that exactly one of the five is an ace. Determine whether the events F and A are
independent or not. [6]

Solution. a. The sample space consists of all possible sequences of five distinct cards
from the deck of 52. There are 52 · 51 · 50 · 49 · 48 = 52!

47! = 52!
(52−5)! =

(
52
5

)
· 5! = 311, 875, 200

outcomes. Each has a probability of 1
52 ·

1
51 ·

1
50 ·

1
49 ·

1
49 = 1

52·51·50·49·48 = 1
311,875,200 . �

b. There are four suites and thirteen cards in each suite, so P (F ) = 4·13·12·11·10·9
52·51·50·49·48 , and

there are four aces and 48 other cards, and one of five positions the ace could occur in,

so P (A) =
(5
1)·4·48·47·46·45

52·51·50·49·48 . Each of the four suites has one ace and twelve other cards, so

P (FA) =
(5
1)·4·1·12·11·10·9
52·51·50·49·48 . It follows that

P (F )P (A) =
4 · 13 · 12 · 11 · 10 · 9
52 · 51 · 50 · 49 · 48

·
(

5
1

)
· 4 · 48 · 47 · 46 · 45

52 · 51 · 50 · 49 · 48

=
12 · 11 · 10 · 9
51 · 50 · 49 · 48

·
(

5
1

)
· 4 · 48 · 47 · 46 · 45

52 · 51 · 50 · 49

=

(
5
1

)
· 4 · 12 · 11 · 10 · 9

52 · 51 · 50 · 49 · 48
· 48 · 47 · 46 · 45

51 · 50 · 49

= P (FA) · 48 · 47 · 46 · 45

51 · 50 · 49
6= P (FA) ,

since 48·47·46·45
51·50·49 ≈ 37.37431 6= 1. Thus A and F are not independent. �
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2. A cubical box has a random number between 2 and 4 as the length of a side.

a. What is the expected value of the volume of the box? [9]

b. What is the probability that the volume of the box is at most 27? [6]

Solution. a. A number chosen at random from the intervabigskipl [2, 4] has the uniform

probability density f(x) =

{ 1
2 2 ≤ x ≤ 4

0 otherwise
, since 1

4−2 = 1
2 . The volume of a cubical box

of side length x is V = x3, so

E(V ) =

∫ ∞
−∞

x3f(x) dx =

∫ 2

−∞
x30 dx+

∫ 4

2

x3 1

2
dx+

∫ ∞
4

x30 dx

= 0 +
1

2
· x

4

4

∣∣∣∣4
2

+ 0 =
1

8

(
44 − 24

)
=

1

8
(256− 16) =

240

8
= 30 . �

b. V = x3 ≤ 27 exactly when x ≤ 3, so

P (V ≤ 27) = P (x ≤ 3) =

∫ 3

−∞
f(x) dx =

∫ 2

−∞
0 dx+

∫ 3

2

1

2
dx

= 0 +
1

2
x

∣∣∣∣3
2

=
1

2
(3− 2) =

1

2
. �

3. A fair coin is tossed, and then tossed again until it comes up the same way the way it
did on the first toss or three more tosses have taken place, whichever comes first. Let
X be the total number of tosses.

a. What is the probability mass function of X? [8]

b. Compute E(X) and Var(X). [7]

Solution. a. Here is a tree diagram for this process:

The sample space is S = {HH, TT, HTH, THT, HTTH, THHT, HTTT, THHH },
and, since the coin is fair, the probability of each outcome is

(
1
2

)n
= 1

2n , where n is
the number of tosses in that outcome.
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Looking at the outcomes and their probabilities, and adding up appropriately, we see
that X = 2, 3, or 4, and:

P (X = 2) = P (HH) + P (TT ) = 2 · 1

4
=

1

2

P (X = 3) = P (HTH) + P (THT ) = 2 · 1

8
=

1

4

P (X = 4) = P (HTTH) + P (THHT ) + P (HTTT ) + P (THHH) = 4 · 1

16
=

1

4

Thus p(x) = P (X = x) =


1
2 x = 2
1
4 x = 3 or 4

0 otherwise. �

b. E(X) =
∑
xp(x) = 2 · 1

2 + 3 · 1
4 + 4 · 1

4 = 11
4 and Var(X) = E

(
X2
)
− [E(X)]

2
=[∑

x2p(x)
]
−
[

11
4

]2
=
[
22 · 1

2 + 32 · 1
4 + 42 · 1

4

]
− 121

16 = 33
4 −

121
16 = 132

16 −
121
16 = 11

16 . �

4. Suppose f(x) =


x 0 ≤ x ≤ 1

x− 2 2 ≤ x ≤ 3

0 otherwise

is the probability density function of the

continuous random variable X. Compute E(X) and Var(X). [15]

Solution. Here goes:

E(X) =

∫ ∞
−∞

xf(x) dx

=

∫ 0

−∞
x0 dx+

∫ 1

0

x · x dx+

∫ 2

1

x0 dx+

∫ 3

2

x(x− 2) dx+

∫ ∞
3

x0 dx

= 0 +
x3

3

∣∣∣∣1
0

+ 0 +

(
x3

3
− x2

)∣∣∣∣3
2

+ 0 =
1

3
− 0 +

(
27

3
− 9

)
−
(

8

3
− 4

)
=

1

3
+ 0−

(
−4

3

)
=

5

3
≈ 1.67

Var(X) = E
(
X2
)
− [E(X)]

2
=

∫ ∞
−∞

x2f(x) dx−
[

5

3

]2

=

∫ 0

−∞
x20 dx+

∫ 1

0

x2 · x dx+

∫ 2

1

x20 dx+

∫ 3

2

x2(x− 2) dx+

∫ ∞
3

x20 dx− 25

9

= 0 +
x4

4

∣∣∣∣1
0

+ 0 +

(
x4

4
− 2x3

3

)∣∣∣∣3
2

+ 0− 25

9

=
1

4
− 0 +

(
81

4
− 54

3

)
−
(

16

4
− 16

3

)
− 25

9
=

66

4
− 38

3
− 25

9

=
33

2
− 38

3
− 25

9
=

297

18
− 228

18
− 50

18
=

19

18
≈ 1.056 �
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5. Suppose X is a geometric random variable such that P (X = 2) = 1
4 .

a. Find p = P (X = 1). [8]

b. Estimate P (X ≥ 5) using Markov’s Inequality, and then compute it exactly. [7]

Solution. a. A geometric random variable with parameter 0 < p < 1 has probability
mass function p(k) = P (X = k) = (1 − p)k−1p for k = 1, 2, 3, . . . (and p(x) = 0
otherwise, of course). Thus p(1) = P (X = 1) = p and p(2) = P (X = 2) = (1− p)p. Since
P (X = 2) = 1

4 , we have (1 − p)p = p − p2 = 1
4 , i.e. p2 − p + 1

4 = 0. We solve for p using
the quadratic formula:

P (X = 1) = p =
−(−1)±

√
(−1)2 − 4 · 1 · 1

4

2 · 1
=

1±
√

1− 1

2
=

1± 0

2
=

1

2
�

b. Recall that Markov’s Inequality states that for a random variable X ≥ 0 and any t > 0,

we haveP (X ≥ t) ≤ E(X)
t . For a geometric random variable with parameter p = 1

2 , we do
have X > 0, and E(X) = 1

p = 1
1/2 = 2, so P (X ≥ 5) ≤ 2

5 = 0.4 by Markov’s Inequality.

It remains to compute P (X ≥ 5) exactly:

P (X ≥ 5) =
∞∑
k=5

P (X = k) =
∞∑
k=5

(1− p)k−1p =
∞∑
k=5

(
1− 1

2

)k−1
1

2
=
∞∑
k=5

(
1

2

)k−1
1

2

=

∞∑
k=5

(
1

2

)k
=

(
1

2

)5

+

(
1

2

)6

+

(
1

2

)7

+ · · · ,

which is a geometric series with first term a =
(

1
2

)5
= 1

32 and common ratio r = 1
2 .

Since |r| =
∣∣ 1

2

∣∣ = 1
2 < 1, this series converges to a

1−r =
1
32

1− 1
2

=
1
32
1
2

= 2
32 = 1

16 . Thus

P (X ≥ 5) = 1
16 . Note that 1

16 is indeed ≤ 2
5 . �
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Part T. Do any two (2) of 6–9. [Subtotal = 30/100]

6. Suppose X is a continuous random variable with a probability density function f(x)
such that f(x) = f(−x) for all x.

a. Show that E(X) = 0. [6]

b. Verify that if we also have that Var(X) = 1
2 , then P (0 ≤ X < 1) ≥ 3

8 . [9]

Solution. a. We need to show that E(X) =
∫∞
−∞ xf(x) dx = 0. Since

∫∞
−∞ xf(x) dx =∫ 0

−∞ xf(x) dx+
∫∞

0
xf(x) dx, it is sufficient to check that

∫ 0

−∞ xf(x) dx = −
∫∞

0
xf(x) dx.

∫ 0

−∞
xf(x) dx = lim

t→∞

∫ 0

−t
xf(x) dx

Substitute u = −x, so x = −u and
thus dx = (−1) du, and x −t 0

u t 0
.

= lim
t→∞

∫ 0

t

(−u)f(−u) (−1) du = lim
t→∞

∫ 0

t

uf(u) du (As f(−u) = f(u).)

= lim
t→∞

−
∫ t

0

uf(u) du = − lim
t→∞

∫ t

0

uf(u) du = −
∫ ∞

0

uf(u) du

= −
∫ ∞

0

xf(x) dx , as required. �

b. First, note that since f(−x) = f(x), an argument similar to the one in the solution to a

above shows that P (0 ≤ X < 1) =
∫ 1

0
f(x) dx =

∫ 0

−1
f(x) dx = P (−1 < X ≤ 0). It follows

that P (0 ≤ X < 1) = 1
2P (−1 < X < 1). In turn, P (−1 < X < 1) = 1− P (|X| ≥ 1), and

we can estimate P (|X| ≥ 1) using Chebyshev’s Inequality, using the fact that Var(X) =
σ2 = 1

2 :

P (|X| ≥ 1) ≤ σ2

12
≤

1
2

1
=

1

2

It follows that P (−1 < X < 1) = 1 − P (|X| ≥ 1) ≥ 1 − 1
2 = 1

2 , and so P (0 ≤ X < 1) =
1
2P (−1 < X < 1) ≥ 1

2 ·
1
2 = 1

4 .
Unfortunately, 1

4 ≤
3
8 . My bad: I intended to have σ = 1

2 , not Var(X) = σ2 = 1
2 , but

that’s not what I put in the question . . . �
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7. Suppose X is a random variable with E(X) > 0, and suppose X1, X2, X3, . . .
are independent random variables with a distribution identical to X. (You can
think of the Xi as being independent copies of X.) Show that if M > 0, then
lim
n→∞

P (X1 +X2 + · · ·+Xn > M) = 1. [15]

Solution. By the Weak Law of Large Numbers, we know that for any ε > 0,

lim
n→∞

P

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
= 0 ,

where µ = E(X). Since any probability is non-negative, and

P

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
= P

(
X1 +X2 + · · ·+Xn

n
− µ > ε

)
+ P

(
X1 +X2 + · · ·+Xn

n
− µ < −ε

)
,

it follows that for any ε > 0,

lim
n→∞

P

(
X1 +X2 + · · ·+Xn

n
− µ < −ε

)
= lim
n→∞

P

(
X1 +X2 + · · ·+Xn

n
< µ− ε

)
= 0 .

In turn, this means that for any ε > 0,

lim
n→∞

P

(
X1 +X2 + · · ·+Xn

n
≥ µ− ε

)
= lim
n→∞

[
1− P

(
X1 +X2 + · · ·+Xn

n
< µ− ε

)]
= 1− 0 = 1 .

Recall that we are given that µ = E(X) > 0. Choose ε = µ
2 , so µ − ε = µ

2 > 0. Since

M > 0 is fixed, there is some N such that for all n ≥ N , µ
2 >

M
n . Then, for every n ≥ N ,

we have

1 ≥ P (X1 +X2 + · · ·+Xn > M) = P

(
X1 +X2 + · · ·+Xn

n
>
M

n

)
≥ P

(
X1 +X2 + · · ·+Xn

n
≥ µ

2

)
= P

(
X1 +X2 + · · ·+Xn

n
≥ µ− ε

)
.

Since lim
n→∞

1 = 1 and lim
n→∞

P
(
X1+X2+···+Xn

n ≥ µ− ε
)

= 1, it now follows by the Squeeze

Theorem that lim
n→∞

P (X1 +X2 + · · ·+Xn > M) = 1, as desired. �

Note: The solution above is guilding the lily a bit – I would have accepted a rather more
informal argument for full credit . . .
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8. Balls are drawn randomly, one at a time, from an urn which initially contains three
white and three black balls. If the ball drawn is white, it is put back in the urn; if
the ball drawn is black, it is not put back in the urn. Let X be the number of draws
taken until a white ball comes up for a second time.

a. Find the probability mass function of X. [7]

b. Compute E(X) and σX . [4]

c. Let A be the event that the next to last ball drawn is black and let B be the
event that X = 4. Determine whether A and B are independent or not. [4]

Solution. a. The fact that black balls are not replaced means that X = 2, 3, 4, or 5.

p(2) = P (X = 2) = P (WW ) =
3

6
· 3

6
=

100

400

p(3) = P (X = 3) = P (BWW ) + P (WBW ) =
3

6
· 3

5
· 3

5
+

3

6
· 3

6
· 3

5
=

9

50
+

3

20
=

132

400
p(4) = P (X = 4) = P (BBWW ) + P (BWBW ) + P (WBBW )

=
3

6
· 2

5
· 3

4
· 3

4
+

3

6
· 3

5
· 2

5
· 3

4
+

3

6
· 3

6
· 3

5
· 3

4
=

111

400
p(4) = P (X = 5) = P (BBBWW ) + P (BBWBW ) + P (BWBBW ) + P (WBBBW )

=
3

6
· 2

5
· 1

4
· 3

3
· 3

3
+

3

6
· 2

5
· 3

4
· 1

4
· 3

3
+

3

6
· 3

5
· 2

5
· 1

4
· 3

3
+

3

6
· 3

6
· 2

5
· 1

4
· 3

3

=
57

400

. . . and, of course, p(x) = 0 if X 6= 2, 3, 4, or 5. �

b. E(X) =
5∑

x=2

xp(x) = 2 · 100

400
+ 3 · 132

400
+ 4 · 111

400
+ 5 · 57

400
=

1325

400
=

53

16
= 3.3125

Var(X) = E
(
x2
)
− [E(X)]

2
=

[
5∑

x=2

x2p(x)

]
−
[

53

16

]2

=

[
22 · 100

400
+ 32 · 132

400
+ 42 · 111

400
+ 52 · 57

400

]
− 2809

256

=
4789

400
− 2809

256
≈ 0.99984 . �

c. Note that A = {WBW, BWBW, WBBW, BBWBW, BWBBW, WBBBW }, B =
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{BBWW, BWBW, WBBW }, and AB = {BWBW, WBBW }. It follows that

P (A) = P (WBW ) + P (BWBW ) + P (WBBW ) + P (BBWBW ) + P (BWBBW )

+ P (WBBBW )

=
3

6
· 3

6
· 3

5
+

3

6
· 3

5
· 2

5
· 3

4
+

3

6
· 3

6
· 3

5
· 3

4
+

3

6
· 2

5
· 3

4
· 1

4
· 3

3
+

3

6
· 3

5
· 2

5
· 1

4
· 3

3

+
3

6
· 3

6
· 2

5
· 1

4
· 3

3
=

202

400
=

101

200
,

P (B) = P (BBWW ) + P (BWBW ) + P (WBBW )

=
3

6
· 2

5
· 3

4
· 3

4
+

3

6
· 3

5
· 2

5
· 3

4
+

3

6
· 3

6
· 3

5
· 3

4
=

111

400
, and

P (AB) = P (BWBW ) + P (WBBW ) =
3

6
· 3

5
· 2

5
· 3

4
+

3

6
· 3

6
· 3

5
· 3

4
=

81

400
,

and thus P (A)P (B) = 101
200 ·

111
400 = 0.1401375 6= 0.2025 = 81

400 = P (AB), so A and B are
not independent. �

9. If every pair among the events A, B, and C are independent of each other, does it
follow that P (ABC) = P (A)P (B)P (C)? Show that it does or give an example to
show that it doesn’t. [15]

Solution. It does not necessarily follow that P (ABC) = P (A)P (B)P (C). For example,
suppose we toss a coin twice times and let A be the event of getting H on the first toss,
B be the event of getting H on the second toss, and C be the event of getting exactly one
head on the two tosses. It is easy to check that P (A) = P (B) = P (C) = 1

2 , P (AB) =
P (HH) = 1

4 = P (A)P (B), P (AC) = P (HT ) = 1
4 = P (A)P (C), and P (BC) = P (TH) =

1
4 = P (B)P (C). However, P (ABC) = P (∅) = 0 6= 1

8 = P (A)P (B)P (C). �

[Total = 100]

Part E. Bonus!

•
• ). In series of games numbered 1, 2, 3, . . . , the winning number in the nth game is

randomly chosen from the set { 1, 2, . . . , n + 2 }. Kosh bets on 1 in each game and
intends to keep playing until winning once. What is the probability that Kosh will
have to play forever? [2]

Solution. The probability is 0 – you figure out why! �

( ◦◦ . Write an original little poem about probability or mathematics in general. [2]

Solution. On your own on this one! �

Enjoy the rest of the summer!
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