Trent University

Summer 2017

MATH 1350H Test
Monday, 29 May

Time: 60 minutes

Name:
 Solutions
 Student Number: 0123456

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do a and any two (2) of b-d. $[10=2+2 \times 4$ each $]$

Consider the lines given by the equations $x-2 y=2$ and $2 x+y=-2$.
a. Sketch a graph of the two lines including their x - and y-intercepts.
b. Find the point where the lines intersect.
c. Find vector-parametric equations for each of the lines.
d. Find the angle between the lines.

Solutions. a. Here is a crude sketch of the two lines:

Observe that the intercepts of the line $x-2 y=2$ are $x=2$ on the x-axis and $y=-1$ on the y-axis, while the intercepts of the line $2 x+y=-2$ are $x=-1$ on the x-axis and $y=-2$ on the y-axis.
b. Solving the equation of the first line for x gives $x=2 y+2$. Substituting this into the equation of the second line gives $2(2 y+2)+y=-2$, so $5 y+4=-2$, hence $5 y=-6$, and thus $y=-\frac{6}{5}$. Substituting back gives $x=2\left(-\frac{6}{5}\right)+2=\frac{-12+10}{5}=-\frac{2}{5}$. Thus the lines intersect at the point $\left(-\frac{2}{5},-\frac{6}{5}\right)$. (As a quick sanity check, this is consistent with the crude sketch drawn for a.)
c. We'll use the vectors from the origin to the x-intercepts of each line, namely $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ for the base vectors, and the vectors from the x-interceopt to the y-intercepts, namely $\left[\begin{array}{c}0-2 \\ -1-0\end{array}\right]=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}0-(-1) \\ -2-0\end{array}\right]=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, for the direction vectors. Thus

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]+s\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

are vector-parametric equations for the two lines $x-2 y=2$ and $2 x+y=-2$, respectively. (s and t are the respective parameters - it's probably not a good idea to use the same parameter for both lines in most applications.)
d. The angle between the lines is the angle between the direction vectors. $\left[\begin{array}{c}-2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}-1 \\ -2\end{array}\right]=$ $(-2)(-1)+1(-2)=2-2=0$, so the two direction vectors are orthogonal to each other, so the angle between the lines is a right angle (i.e. 90° or $\frac{\pi}{2} \mathrm{rad}$).
2. Do any two (2) of a-c. [10 $=2 \times 5$ each]

$$
\text { Let } \mathbf{u}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text {, and } \mathbf{w}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

a. Find the components of \mathbf{w} that are, respectively, parallel to and perpendicular to \mathbf{v}.
b. Solve $2 \mathbf{u}+4 \mathbf{w}+5 \mathbf{x}=-3 \mathbf{v}$ for \mathbf{x}.
c. Find the angle between \mathbf{u} and \mathbf{v}.

Solutions. a. The component of \mathbf{w} parallel to \mathbf{v} is the projection of \mathbf{w} onto \mathbf{v} :

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{w})=\frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{1 \cdot 1+1 \cdot 0+0 \cdot 1}{1 \cdot 1+0 \cdot 0+1 \cdot 1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right]
$$

The component of \mathbf{w} perpendicular to \mathbf{v} is what is left when you take the component parallel to \mathbf{v} away from \mathbf{w} :

$$
\mathbf{w}-\operatorname{proj}_{\mathbf{v}}(\mathbf{w})=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right]
$$

b. Just a bit of rearranging and arithmetic:

$$
\begin{aligned}
& 2 \mathbf{u}+4 \mathbf{w}+5 \mathbf{x}=-3 \mathbf{v} \\
\Longrightarrow & 5 \mathbf{x}=-2 \mathbf{u}-3 \mathbf{v}-4 \mathbf{w} \\
\Longrightarrow & \mathbf{x}=-\frac{2}{5} \mathbf{u}-\frac{3}{5} \mathbf{v}-\frac{4}{5} \mathbf{w}=-\frac{2}{5}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{3}{5}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\frac{4}{5}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{5} \\
-\frac{6}{5} \\
-1
\end{array}\right]
\end{aligned}
$$

c. Recall that if θ is the (smallest) angle between \mathbf{u} and \mathbf{v}, then

$$
\cos (\theta)=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \mathbf{v} \|}=\frac{0 \cdot 1+1 \cdot 0+1 \cdot 1}{\sqrt{0^{2}+1^{2}+1^{2}} \sqrt{1^{2}+0^{2}+1^{2}}}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2}
$$

so $\theta=\arccos \left(\frac{1}{2}\right)=60^{\circ}=\frac{\pi}{3} \mathrm{rad}$.

$$
\begin{aligned}
2 x+y+z & =1 \\
x+y & =1 \\
x+2 y-z & =2
\end{aligned}
$$

3. Consider the following system of linear equations: $x+y=1$
a. Find all the solutions, if any, of this system. [8]
b. Use your solution to a to help determine whether the vectors $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ are linearly independent. [2]

Solutions. a. We set up the augmented matrix corresponding to the given system and apply the Gauss-Jordan algorithm:

$$
\begin{aligned}
& \left.\left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 2 & -1 & 2
\end{array}\right] \stackrel{R_{1}}{\Longrightarrow} \not R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 1 \\
1 & 2 & -1 & 2
\end{array}\right] \underset{R_{3}-2 R_{1}}{\Longrightarrow} \begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
R_{3}-R_{1}
\end{array}\right] \\
& \underset{(-1)}{\Longrightarrow} R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & 1
\end{array}\right] \underset{R_{3}-R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { i.e. } \begin{array}{l}
x+z=0 \\
R_{3}
\end{array}
\end{aligned}
$$

Having fully reduced the matrix, we see that there are infinitely many solutions; if we set $z=t$ for a parameter t, then $x=-z=-t$ and $y=1+z=1+t$, which forms a line in \mathbb{R}^{3}. In vector-parametric form the solutions are $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right], t \in \mathbb{R}$.
b. The three vectors are not linearly independent. If one were to replace the right-hand side column in the original augmented matrix above by all zeros and then apply the GaussJordan algorithm just as above, the final augmented matrix woould be $\left[\begin{array}{ccc|c}1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, representing the system $x+z=0$ and $y-z=0$. (Recall that the allowed row operations do not change a column of zeros.) This also has infinitely many solutions, so there must x, y, and z which are not all 0 and such that $x\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]+y\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+z\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. This means, by definition, that these vectors are not linearly independent.
4. Let $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$, and let $\mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$.
a. Determine whether $\mathbf{x} \in \operatorname{Span}(S)$. [8]
b. Determine whether S is a linearly independent set of vectors. [2]

Solutions. a. By definition, $\mathbf{x} \in \operatorname{Span}(S)$ if there are scalars a, b, and c such that $a\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]+b\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]+c\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$, i.e. such that $a+b+c=1, a+c=0, a+b=0$, and $a+b+c=1$. We set up the augmented matrix for this system of equations and Gauss-Jordan away:

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \begin{array}{c}
\Longrightarrow \\
R_{2}-R_{1} \\
R_{3}-R_{1} \\
R_{4}-R_{1}
\end{array}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \stackrel{\begin{array}{cc}
\\
(-1) R_{2} \\
(-1) R_{3}
\end{array}\left[\begin{array}{lll|l}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]}{ } \begin{array}{l}
R_{1}-R_{2}
\end{array}\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow R_{3}\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
a=-1 \\
\text { i.e. } \quad b=1 \\
c=1
\end{array}}
\end{gathered}
$$

Since there is a solution, $\mathbf{x} \in \operatorname{Span}(S)$.
b. Proceeding just as in the solution to $\mathbf{3 b}$, if one were to replace the right-hand side in the calculation above with zeros, one would eventually obtain $\left[\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ as the fully reduced augmented matrix, corresponding to the unique solution $a=b=c=0$. By definition, this means that S is a linearly independent set.

