TRENT UNIVERSITY, Summer 2017

MATH 1350H Test

Monday, 29 May Time: 60 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.
- **1.** Do **a** and any two (2) of **b**-**d**. $[10 = 2 + 2 \times 4 \text{ each}]$ Consider the lines given by the equations x - 2y = 2 and 2x + y = -2.
- **a.** Sketch a graph of the two lines including their x- and y-intercepts.
- **b.** Find the point where the lines intersect.
- **c.** Find vector-parametric equations for each of the lines.
- **d.** Find the angle between the lines.
- **2.** Do any *two* (2) of **a**-**c**. $/10 = 2 \times 5 \ each/$

Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

- \mathbf{a} . Find the components of \mathbf{w} that are, respectively, parallel to and perpendicular to \mathbf{v} .
- **b.** Solve $2\mathbf{u} + 4\mathbf{w} + 5\mathbf{x} = -3\mathbf{v}$ for \mathbf{x} .
- \mathbf{c} . Find the angle between \mathbf{u} and \mathbf{v} .

- ${\bf a.}\;$ Find all the solutions, if any, of this system. [8]
- **b.** Use your solution to **a** to help determine whether the vectors $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ are linearly independent. [2]

4. Let
$$S = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} \right\}$$
, and let $\mathbf{x} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$.

- **a.** Determine whether $\mathbf{x} \in \text{Span}(S)$. [8]
- **b.** Determine whether S is a linearly independent set of vectors. [2]

[Total = 40]