Mathematics 1350H - Linear Algebra I: Matrix Algebra
 Trent University, Summer 2017

 Quizzes

 Quizzes}

Quiz \#1. Wednesday, 10 May, 2017. [10 minutes]
Let $\mathbf{a}=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ be vectors in \mathbb{R}^{3}.

1. Find $\mathbf{a}+\mathbf{b}$ and $\mathbf{a}-\mathbf{b}$. [2]
2. Determine whether or not \mathbf{a} and \mathbf{b} are perpendicular to each other. [2]
3. Let $c=\frac{1}{\|\mathbf{a}\|}$. Without actually working out the numbers, what is $\|c \mathbf{a}\|$ equal to? [1]

Quiz \#2. Monday, 15 May, 2017. [10 minutes]
Consider the three points $(1,1,2),(1,2,1)$, and $(2,1,1)$ in \mathbb{R}^{3}.

1. Sketch the axes of \mathbb{R}^{3}, the three given points, and the triangle they make. [1]
2. Find a parametric representation of the plane passing through the given points. [2]
3. Find a linear equation representing the plane passing through the given points. [2]

Quiz \#3. Wednesday, 17 May, 2017. [15 minutes]

1. Use the Gauss-Jordan method to find the point(s) of intersection, if any, of the planes in \mathbb{R}^{3} given by the linear equations $x-y+z=1,2 x-y-z=0$, and $x-2 y+3 z=2$, respectively. [5]

Quiz \#4. Wednesday, 24 May, 2017. [20 minutes]

1. Use the Gauss-Jordan method to find all the solutions, if any, of the following system of linear equations. [5]

$$
\begin{gathered}
2 x-y+5 z-8 w=6 \\
x-2 y+10 z+w=-3 \\
x-y+7 z-w=1 \\
x+y+z-5 w=9
\end{gathered}
$$

Quiz \#5. Wednesday, 31 May, 2017. [10 minutes]
Let $\mathbf{A}=\left[\begin{array}{cccc}1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 1 & -1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 1 \\ 4 \\ 1\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{l}5 \\ 9 \\ 2 \\ 6\end{array}\right]$.

1. Compute Ab and Ac. [4]
2. Using your work in solving question 1 , compute $\mathbf{A}(2 \mathbf{b}-\mathbf{c})$. [1]

Quiz \#6. Monday, 5 June, 2017. [12 minutes]

1. Find the inverse matrix, if there is one, of $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 0 \\ 3 & 3 & 3\end{array}\right] \cdot[5]$

Quiz \#7. Wednesday, 7 June, 2017. [15 minutes]

1. Find the rank and nullity of $\mathbf{A}=\left[\begin{array}{cccc}2 & -3 & 4 & -5 \\ -3 & 4 & -5 & 6 \\ 4 & -5 & 6 & -7 \\ -5 & 6 & -7 & 8\end{array}\right] \cdot[5]$
