Mathematics 1350H - Linear Algebra I: Matrix Algebra
 Trent University, Summer 2017
 Solutions to the Quizzes

Quiz \#1. Wednesday, 10 May, 2017. [10 minutes]
Let $\mathbf{a}=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ be vectors in \mathbb{R}^{3}.

1. Find $\mathbf{a}+\mathbf{b}$ and $\mathbf{a}-\mathbf{b}$. [2]
2. Determine whether or not \mathbf{a} and \mathbf{b} are perpendicular to each other. [2]
3. Let $c=\frac{1}{\|\mathbf{a}\|}$. Without actually working out the numbers, what is $\|c \mathbf{a}\|$ equal to? [1]

Solutions. 1. First, $\mathbf{a}+\mathbf{b}=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]+\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}(-1)+(-1) \\ 2+1 \\ (-3)+1\end{array}\right]=\left[\begin{array}{c}-2 \\ 3 \\ -2\end{array}\right]$. Second,
$\mathbf{a}-\mathbf{b}=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right]-\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}(-1)-(-1) \\ 2-1 \\ (-3)-1\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ -4\end{array}\right]$.
2. Since the dot product $\mathbf{a} \cdot \mathbf{b}=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]=(-1) \cdot(-1)+2 \cdot 1+(-3) \cdot 1=1+2-3=0$, \mathbf{a} and \mathbf{b} are indeed perpendicular to one another.
3. Note that $c=\frac{1}{\|\mathbf{a}\|}>0$, because $\|\mathbf{a}\|>0$ since $\|\mathbf{a}\|$ is the length of a vector other than
0. It follows that $\|c \mathbf{a}\|=|c| \cdot\|\mathbf{a}\|=c \cdot\|\mathbf{a}\|=\frac{1}{\|\mathbf{a}\|} \cdot\|\mathbf{a}\|=1$.

Quiz \#2. Monday, 15 May, 2017. [10 minutes]
Consider the three points $(1,1,2),(1,2,1)$, and $(2,1,1)$ in \mathbb{R}^{3}.

1. Sketch the axes of \mathbb{R}^{3}, the three given points, and the triangle they make. [1]
2. Find a parametric representation of the plane passing through the given points. [2]
3. Find a linear equation representing the plane passing through the given points. [2]

Solutions. 1. Here is a fairly crude sketch:

The box guiding where $(1,1,2)$ should be is drawn in, just to show how it's done. Note that due to the crude perspective, the point $(2,1,1)$ appears to be on the y-axis.
2. We'll go for a vector-parametric representation, using the coordinates of first point to give us the base vector,

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

and the vectors from the base point to the other two points for the direction vectors:

$$
\mathbf{u}=\left[\begin{array}{l}
1-1 \\
2-1 \\
1-2
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
2-1 \\
1-1 \\
1-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] .
$$

This gives the following vector-parametric representation of the given plane:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\mathbf{x}=\mathbf{x}_{0}+s \mathbf{u}+t \mathbf{v}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+s\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \text {, for } s, t \in \mathbb{R}
$$

For those who don't like vector-parametric form, one could also write the parametrization coordinate by coordinate: $x=1+t, y=1+s, z=2-s-t$.
3. From the solution to question 2 above, $x=1+t$, so $t=x-1$, and $y=1+s$, so $s=y-1$. It follows that $z=2-s-t=2-(y-1)-(x-1)=4-x-y$, and moving x and y to the left-hand side then gives us the equation $x+y+z=4$. (You can check this answer by checking that each of the three original points satisfies this equation.)

Quiz \#3. Wednesday, 17 May, 2017. [15 minutes]

1. Use the Gauss-Jordan method to find the point(s) of intersection, if any, of the planes in \mathbb{R}^{3} given by the linear equations $x-y+z=1,2 x-y-z=0$, and $x-2 y+3 z=2$, respectively. [5]

Solution. We set up the augmented matrix for the system of equations and Gauss-Jordan away:

$$
\left.\begin{array}{rl}
& {\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
2 & -1 & -1 & 0 \\
1 & -2 & 3 & 2
\end{array}\right] \underset{\substack{2 \\
R_{2}-2 R_{1} \\
R_{3}-R_{1}}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 1 & -3 & -2 \\
0 & -1 & 2 & 1
\end{array}\right]} \\
R_{1}+R_{2} \\
R_{3}+R_{2}
\end{array}\left[\begin{array}{lll|l}
1 & 0 & -2 & -1 \\
0 & 1 & -3 & -2 \\
0 & 0 & -1 & -1
\end{array}\right] \underset{(-1) R_{3}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & -2 & -1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 1 & 1
\end{array}\right]\right)
$$

Since the coefficient part of the final augmented matrix is a 3×3 identity matrix, we see that the three planes meet in a single point, whose coordinates we can read off the right-hand side part of the final augmented matrix. That is $x=1, y=1$, and $z=1$ is the only solution to the given system of linear equations, so the sole common point of the three planes is $(1,1,1)$.

Quiz \#4. Wednesday, 24 May, 2017. [20 minutes]

1. Use the Gauss-Jordan method to find all the solutions, if any, of the following system of linear equations. [5]

$$
\begin{gathered}
2 x-y+5 z-8 w=6 \\
x-2 y+10 z+w=-3 \\
x-y+7 z-w=1 \\
x+y+z-5 w=9
\end{gathered}
$$

Corrected Solution. As usual, we set up the corresponding augmented matrix and apply the Gauss-Jordan algorithm:

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
2 & -1 & 5 & -8 & 6 \\
1 & -2 & 10 & 1 & -3 \\
1 & -1 & 7 & -1 & 1 \\
1 & 1 & 1 & -5 & 9
\end{array}\right] \stackrel{R_{1}}{\sim} \not R_{4}\left[\begin{array}{cccc|c}
1 & 1 & 1 & -5 & 9 \\
1 & -2 & 10 & 1 & -3 \\
1 & -1 & 7 & -1 & 1 \\
2 & -1 & 5 & -8 & 6
\end{array}\right]} \\
& \begin{array}{c}
\Longrightarrow \\
R_{2}-R_{1} \\
R_{3}-R_{1} \\
R_{4}-2 R_{1}
\end{array}\left[\begin{array}{cccc|c}
1 & 1 & 1 & -5 & 9 \\
0 & -3 & 9 & 6 & -12 \\
0 & -2 & 6 & 4 & -8 \\
0 & -3 & 3 & 2 & -12
\end{array}\right] \stackrel{\frac{1}{3} R_{2}}{\Longrightarrow}\left[\begin{array}{cccc|c}
1 & 1 & 1 & -5 & 9 \\
0 & 1 & -3 & -2 & 4 \\
0 & -2 & 6 & 4 & -8 \\
0 & -3 & 3 & 2 & -12
\end{array}\right] \\
& \begin{array}{c}
R_{1}-R_{2} \\
\begin{array}{c}
R_{3} \\
R_{4}+2 R_{2}
\end{array}
\end{array}\left[\begin{array}{cccc|c}
1 & 0 & 4 & -3 & 5 \\
0 & 1 & -3 & -2 & 4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -6 & -4 & 0
\end{array}\right] \underset{R_{2}}{\Longrightarrow} \Longrightarrow R_{4}\left[\begin{array}{cccc|c}
1 & 0 & 4 & -3 & 5 \\
0 & 1 & -3 & -2 & 4 \\
0 & 0 & -6 & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \underset{-\frac{6}{R} 3}{\Longrightarrow}\left[\begin{array}{cccc|c}
1 & 0 & 4 & -3 & 5 \\
0 & 1 & -3 & -2 & 4 \\
0 & 0 & 1 & \frac{2}{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \stackrel{\begin{array}{c}
R_{1}-4 R_{3} \\
R_{2}+3 R_{3}
\end{array} \Longrightarrow\left[\begin{array}{cccc|c}
1 & 0 & 0 & -\frac{17}{3} & 5 \\
0 & 1 & 0 & 0 & 4 \\
0 & 0 & 1 & \frac{2}{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { [Whew!] }}{\Longrightarrow}
\end{aligned}
$$

By setting w equal to the parameter t, we can now solve for the other variables in terms of t. Thus $x=5+\frac{17}{3} t, y=4, z=-\frac{2}{3} t$, and $w=t$ is a parametric description of all the solutions. The corresponding vector-parameteric form is:

$$
\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
5 \\
4 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{17}{3} \\
0 \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

Note that the infinitely many solutions form a line in \mathbb{R}^{4}.

Quiz \#5. Wednesday, 31 May, 2017. [10 minutes]
Let $\mathbf{A}=\left[\begin{array}{cccc}1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 1 & -1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 1 \\ 4 \\ 1\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{l}5 \\ 9 \\ 2 \\ 6\end{array}\right]$.

1. Compute Ab and Ac. [4]
2. Using your work in solving question 1 , compute $\mathbf{A}(2 \mathbf{b}-\mathbf{c})$. [1]

Solutions. 1. We apply the definition of multiplying a vector by a matrix twice over:

$$
\begin{aligned}
& \mathbf{A} \mathbf{b}=\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
1 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \cdot 3-1 \cdot 1+1 \cdot 4+0 \cdot 1 \\
0 \cdot 3+1 \cdot 1-1 \cdot 4+1 \cdot 1 \\
1 \cdot 3+0 \cdot 1+1 \cdot 4-1 \cdot 1
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2 \\
6
\end{array}\right] \\
& \mathbf{A c}=\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
1 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
5 \\
9 \\
2 \\
6
\end{array}\right]=\left[\begin{array}{c}
1 \cdot 5-1 \cdot 9+1 \cdot 2+0 \cdot 6 \\
0 \cdot 5+1 \cdot 9-1 \cdot 2+1 \cdot 6 \\
1 \cdot 5+0 \cdot 9+1 \cdot 2-1 \cdot 6
\end{array}\right]=\left[\begin{array}{c}
-2 \\
13 \\
1
\end{array}\right]
\end{aligned}
$$

2. We exploit the fact that multiplying vectors by a matrix respects the addition vectors and multiplication by scalars:

$$
\mathbf{A}(2 \mathbf{b}-\mathbf{c})=2 \mathbf{A} \mathbf{b}-\mathbf{A} \mathbf{c}=2\left[\begin{array}{c}
6 \\
-2 \\
6
\end{array}\right]-\left[\begin{array}{c}
-2 \\
13 \\
1
\end{array}\right]=\left[\begin{array}{c}
14 \\
-17 \\
11
\end{array}\right]
$$

Quiz \#6. Monday, 5 June, 2017. [12 minutes]

1. Find the inverse matrix, if there is one, of $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 0 \\ 3 & 3 & 3\end{array}\right] \cdot[5]$

Solution. We set up the "super-augmented" matrix and Gauss-Jordan the day away:

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 & 1 & 0 \\
3 & 3 & 3 & 0 & 0 & 1
\end{array}\right] \underset{\substack{ \\
R_{2}-2 R_{1} \\
R_{3}-3 R_{1}}}{\Longrightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & -2 & -2 & 1 & 0 \\
0 & 3 & 0 & -3 & 0 & 1
\end{array}\right]} \\
& \underset{\frac{1}{2} R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & \frac{1}{2} & 0 \\
0 & 3 & 0 & -3 & 0 & 1
\end{array}\right] \underset{R_{3}-3 R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & \frac{1}{2} & 0 \\
0 & 0 & 3 & 0 & -\frac{3}{2} & 1
\end{array}\right] \\
& \underset{\frac{1}{3} R_{3}}{\Longrightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{3}
\end{array}\right] \stackrel{\begin{array}{l}
R_{1}-R_{3} \\
R_{2}+R_{3}
\end{array}}{\Longrightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{3} \\
0 & 1 & 0 & -1 & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{3}
\end{array}\right]
\end{aligned}
$$

Thus \mathbf{A} does have an inverse matrix, namely $\mathbf{A}^{-1}=\left[\begin{array}{ccc}1 & \frac{1}{2} & -\frac{1}{3} \\ -1 & 0 & \frac{1}{3} \\ 0 & -\frac{1}{2} & \frac{1}{3}\end{array}\right]$.
Just to display our paranoia for all to see, we check the answer:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 0 \\
3 & 3 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{1}{2} & -\frac{1}{3} \\
-1 & 0 & \frac{1}{3} \\
0 & -\frac{1}{2} & \frac{1}{3}
\end{array}\right] } \\
= & {\left[\begin{array}{lll}
1 \cdot 1+0 \cdot(-1)+1 \cdot 0 & 1 \cdot \frac{1}{2}+0 \cdot 0+1 \cdot\left(-\frac{1}{2}\right) & 1 \cdot\left(-\frac{1}{3}\right)+0 \cdot \frac{1}{3}+1 \cdot \frac{1}{3} \\
2 \cdot 1+2 \cdot(-1)+0 \cdot 0 & 2 \cdot \frac{1}{2}+2 \cdot 0+0 \cdot\left(-\frac{1}{2}\right) & 2 \cdot\left(-\frac{1}{3}\right)+2 \cdot \frac{1}{3}+0 \cdot \frac{1}{3} \\
3 \cdot 1+3 \cdot(-1)+3 \cdot 0 & 3 \cdot \frac{1}{2}+3 \cdot 0+3 \cdot\left(-\frac{1}{2}\right) & 3 \cdot\left(-\frac{1}{3}\right)+3 \cdot \frac{1}{3}+3 \cdot \frac{1}{3}
\end{array}\right] } \\
= & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{I}_{3} }
\end{aligned}
$$

Since the product of the given matrix and the computed inverse is indeed the identity matrix, the computed inverse is really the inverse of the given matrix. Whew!

Quiz \#7. Wednesday, 7 June, 2017. [15 minutes]

1. Find the rank and nullity of $\mathbf{A}=\left[\begin{array}{cccc}2 & -3 & 4 & -5 \\ -3 & 4 & -5 & 6 \\ 4 & -5 & 6 & -7 \\ -5 & 6 & -7 & 8\end{array}\right] \cdot[5]$

Solution. First, we fully reduce A using the Gauss-Jordan method:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & -3 & 4 & -5 \\
-3 & 4 & -5 & 6 \\
4 & -5 & 6 & -7 \\
-5 & 6 & -7 & 8
\end{array}\right] \underset{3}{ }+R_{2}\left[\begin{array}{cccc}
2 & -3 & 4 & -5 \\
-3 & 4 & -5 & 6 \\
1 & -1 & 1 & -1 \\
-5 & 6 & -7 & 8
\end{array}\right]} \\
& \begin{array}{c}
R_{1}
\end{array} \Longrightarrow R_{3}\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-3 & 4 & -5 & 6 \\
2 & -3 & 4 & -5 \\
-5 & 6 & -7 & 8
\end{array}\right] \underset{\substack{ \\
R_{2}+3 R_{1} \\
R_{3}-2 R_{1} \\
R_{4}+5 R_{1}}}{ }\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
0 & 1 & -2 & 3 \\
0 & -1 & 2 & -3 \\
0 & 1 & -2 & 3
\end{array}\right] \\
& \begin{array}{c}
R_{1}+R_{2} \\
R_{3}+R_{2} \\
R_{4}-R_{2}
\end{array}\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & -2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The fully reduced matrix has two rows that are not all 0 s, so $\operatorname{rank}(\mathbf{A})=2$.
Second, by the Rank-Nullity Law, $\operatorname{rank}(\mathbf{A})+\operatorname{nullity}(\mathbf{A})=\#$ columns in \mathbf{A}. It follows that nullity $(\mathbf{A})=\#$ columns in $\mathbf{A}-\operatorname{rank}(\mathbf{A})=4-2=2$.

