Mathematics 1350H - Linear algebra I: matrix algebra

TRENT UNIVERSITY, Summer 2017

Assignment #2 Orthogonalization

Due on Wednesday, 24 May, 2017.

The key to what follows is the following idea. The component of a vector \mathbf{v} parallel to a (non-zero) vector \mathbf{u} is the *projection of* \mathbf{v} *onto* \mathbf{u} :

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

Further, if you take away the component of \mathbf{v} which is parallel to \mathbf{u} away from \mathbf{v} , the remaining component, namely

$$\mathbf{v} - \mathrm{proj}_{\mathbf{u}}(\mathbf{v}) = \mathbf{v} - \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u} \,,$$

is orthogonal to **u**. (See §1.2 of the textbook for more on this.)

1. Suppose \mathbf{v} and $\mathbf{u} \neq \mathbf{0}$ are both vectors in \mathbb{R}^n . Verify that $\mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is orthogonal to \mathbf{u} . [3]

Hint: Use the dot product!

Now let $B = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$ be a set of three vectors in \mathbb{R}^3 . We will

modify this set of vectors to make it nicer in some respects.

- **2.** Use the idea in **1** to modify the second vector in B to make it orthogonal to the first vector in B. [2]
- **3.** Modify the third vector in B to make it orthogonal to both the first and second vectors in B. [3]
- **4.** Modify the first vector in B and your modified vectors from **2** and **3** to have length one. [1]
- 5. What might your final collection of modified vectors from 4 be good for? [1]