Mathematics 1350H - Linear algebra I: matrix algebra

Trent University, Summer 2017
Assignment \#2
Orthogonalization
Due on Wednesday, 24 May, 2017.
The key to what follows is the following idea. The component of a vector \mathbf{v} parallel to a (non-zero) vector \mathbf{u} is the projection of \mathbf{v} onto \mathbf{u} :

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

Further, if you take away the component of \mathbf{v} which is parallel to \mathbf{u} away from \mathbf{v}, the remaining component, namely

$$
\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\mathbf{v}-\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

is orthogonal to \mathbf{u}. (See $\S 1.2$ of the textbook for more on this.)

1. Suppose \mathbf{v} and $\mathbf{u} \neq \mathbf{0}$ are both vectors in \mathbb{R}^{n}. Verify that $\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is orthogonal to \mathbf{u}. [3]
Hint: Use the dot product!
Now let $B=\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]\right\}$ be a set of three vectors in \mathbb{R}^{3}. We will modify this set of vectors to make it nicer in some respects.
2. Use the idea in $\mathbf{1}$ to modify the second vector in B to make it orthogonal to the first vector in B. [2]
3. Modify the third vector in B to make it orthogonal to both the first and second vectors in B. [3]
4. Modify the first vector in B and your modified vectors from 2 and $\mathbf{3}$ to have length one. [1]
5. What might your final collection of modified vectors from $\mathbf{4}$ be good for? [1]
