Mathematics 1350H - Linear Algebra I: Matrix Algebra
 Trent University, Summer 2017
 Assignment \#1
 Shifty business
 Due on Monday, 15 May.

Suppose $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ is an n-place row vector. The left shift of a by k places (where $0 \leq k<n$) is the vector $\sigma_{k}(\mathbf{a})=\left[a_{k+1}, a_{k+2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{k}\right]$. For example, here is a left shift by 2 places of a 6 -place vector:

$$
\sigma_{2}([3,-1,0,5,1,-2])=[0,5,1,-2,3,-1]
$$

Note that for any vector $\mathbf{a}, \sigma_{0}(\mathbf{a})=\mathbf{a}$; that is, the left shift by 0 places does nothing to the vector.

1. Explain why $\sigma_{k}(s \mathbf{a})=s \sigma_{k}(\mathbf{a})$ and $\sigma_{k}(\mathbf{a}+\mathbf{b})=\sigma_{k}(\mathbf{a})+\sigma_{k}(\mathbf{b})$ for any n-place vectors \mathbf{a} and \mathbf{b}, integer k with $0 \leq k<n$, and scalar s. [2]
2. Is it true that $\sigma_{k}\left(\sigma_{\ell}(\mathbf{a})\right)=\sigma_{k+\ell}(\mathbf{a})$, assuming that $0 \leq k+l<n$ too? Explain why or why not. [2]
3. Suppose we identify the point (a, b) in the Cartesian plane with the row vector $[a, b]$. Geometrically, what does σ_{1} do to the Cartesian plane? [2]
4. How does the left shift operator interact with the dot product? [2]
5. Find a vector a with as many places as you can such that each entry of a is either +1 or -1 , and such that for every left shift by $k>0$ places we have $\left|\mathbf{a} \cdot \sigma_{k}(\mathbf{a})\right| \leq 1$. [2]
