Trent University
 MATH 1350H Test

1 June, 2015
Time: 60 minutes

Question Mark

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$

Consider the lines given by the vector-parametric equations $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+t\left[\begin{array}{l}2 \\ 2\end{array}\right]$, $t \in \mathbb{R}$, and $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+s\left[\begin{array}{l}3 \\ 2\end{array}\right], s \in \mathbb{R}$.
a. Find the angle between the lines.
b. Find an equation of the form $a x+b y=c$ for each of the lines.
c. Find the point where the lines intersect.

Solutions. a. Sanity check: the given lines are not parallel since their direction vectors are not multiples of one another. Since they lines in \mathbb{R}^{2} which are not parallel, they must intersect, so "the angle between th lines" makes sense.

The angle between the lines is the angle θ between their direction vectors. Then

$$
\cos (\theta)=\frac{\left[\begin{array}{l}
2 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]}{\left\|\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\|\left\|\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\| \|}=\frac{2 \cdot 3+2 \cdot 2}{\sqrt{2^{2}+2^{2}} \sqrt{3^{2}+2^{2}}}=\frac{10}{\sqrt{8} \sqrt{13}} \approx 0.9806
$$

It follows that the angle between the lines is $\theta \approx \arccos (0.9806) \approx 0.197 \mathrm{rad} \approx 11.3^{\circ}$.
b. For the first line, we have $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+t\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{c}x=1+2 t \\ 2+2 t\end{array}\right]$, i.e. $x=1+2 t$ and $y=2+2 t$. Rearranging the last equations, we get $\frac{x-1}{2}=t=\frac{y-2}{2}$, from which it follows that $2(x-1)=2(y-2)$. Multiplying this out and rearranging gives us $x-y=-1$.

For the second line we have $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+s\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{c}x=1+3 s \\ 2+2 s\end{array}\right]$, i.e. $x=1+3 s$ and $y=2+2 s$. Rearranging the last equations, we get $\frac{x-1}{3}=s=\frac{y-2}{2}$, from which it follows that $2(x-1)=3(y-2)$. Rearranging this, in turn, gives us $2 x-3 y=-4$.
c. The two lines are given with the same base vector, $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, so they have the point $(1,2)$ in common. (When $s=t=0$, if it matters ...)
2. Do any two (2) of a-c. $[10=2 \times 5$ each $]$

$$
\text { Let } \mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right] \text {, and } \mathbf{w}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

a. Find the angle θ between \mathbf{u} and \mathbf{v}.
b. Solve the equation $\mathbf{u}-2 \mathbf{v}+3 \mathbf{w}-4 \mathbf{x}=\mathbf{0}$ for \mathbf{x}.
c. Find the components of \mathbf{w} that are, respectively, parallel to and perpendicular to \mathbf{v}.

Solutions. a. The angle θ between \mathbf{u} and \mathbf{v} satisfies

$$
\cos (\theta)=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{1 \cdot 1+1(-1)+1 \cdot 1+1 \cdot 1}{\sqrt{1^{2}+1^{2}+1^{2}+1^{2}} \sqrt{1^{2}+(-1)^{2}+1^{2}+1^{2}}}=\frac{2}{\sqrt{4} \sqrt{4}}=\frac{2}{4}=\frac{1}{2}
$$

It follows that $\theta=\arccos \left(\frac{1}{2}\right)=\frac{\pi}{3} \mathrm{rad}=60^{\circ}$.
b. We are given that $\mathbf{u}-2 \mathbf{v}+3 \mathbf{w}-4 \mathbf{x}=\mathbf{0}$, so $4 \mathbf{x}=\mathbf{u}-2 \mathbf{v}+3 \mathbf{w}$, and hence

$$
\begin{aligned}
\mathbf{x} & =\frac{1}{4}(\mathbf{u}-2 \mathbf{v}+3 \mathbf{w})=\frac{1}{4}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-2\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]+3\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]\right) \\
& =\frac{1}{4}\left[\begin{array}{c}
1-2 \cdot 1+3 \cdot 1 \\
1-2(-1)+3(-1) \\
1-2 \cdot 1+3(-1) \\
1-2 \cdot 1+3 \cdot 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
2 \\
0 \\
-4 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-1 \\
\frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

c. The component of \mathbf{w} parallel to \mathbf{v} is the projection of \mathbf{w} onto \mathbf{v}, namely

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{w})=\frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{1 \cdot 1+(-1)(-1)+(-1) 1+1 \cdot 1}{1 \cdot 1+(-1)(-1)+1 \cdot 1+1 \cdot 1}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]=\frac{2}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
$$

The component of \mathbf{w} perpendicular to \mathbf{v} is $\mathbf{w}-\operatorname{proj}_{\mathbf{v}}(\mathbf{w})=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]-\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{3}{2} \\ \frac{1}{2}\end{array}\right]$.

$$
\begin{aligned}
2 x+y+z & =4 \\
x+2 y+z & =4 \\
x+y+2 z & =4
\end{aligned}
$$

3. Consider the following system of linear equations: $x+2 y+z=4$
a. Find all the solutions, if any, of this system. [8]
b. Use your answer to a to determine whether the vectors $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ are linearly dependent or independent. [2]

Solutions. a. As usual, we set up the augmented matrix and Gauss-Jordan away:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
2 & 1 & 1 & 4 \\
1 & 2 & 1 & 4 \\
1 & 1 & 2 & 4
\end{array}\right] \stackrel{R_{1} \Longleftrightarrow R_{2}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 2 & 1 & 4 \\
2 & 1 & 1 & 4 \\
1 & 1 & 2 & 4
\end{array}\right] \underset{\substack{ \\
R_{2}-2 R_{1} \\
R_{3}-R_{1}}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 4 \\
0 & -3 & -1 & -4 \\
0 & -1 & 1 & 0
\end{array}\right]} \\
& \begin{array}{c}
\\
R_{2} \leftrightarrow
\end{array} R_{3}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 4 \\
0 & -1 & 1 & 0 \\
0 & -3 & -1 & -4
\end{array}\right] \underset{2}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 4 \\
0 & 1 & -1 & 0 \\
0 & -3 & -1 & -4
\end{array}\right] \underset{R_{1}-2 R_{2}}{\Longrightarrow} \begin{array}{ccc|c}
\\
R_{3}+3 R_{2}
\end{array}\left[\begin{array}{cccc}
1 & 0 & 3 & 4 \\
0 & 1 & -1 & 0 \\
0 & 0 & -4 & -4
\end{array}\right] \\
& \underset{-\frac{1}{4} R_{3}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 3 & 4 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \underset{\substack{R_{1}-3 R_{3} \\
R_{2}+R_{3} \\
\Longrightarrow}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

It follows that there is exactly one solution to the given system of linear equations, namely $x=y=z=1$.
b. Whether the three vectors are linearly independent or not comes down to, by definition, whether scalars a, b, and c such that $a\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]+b\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+c\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ all have to be 0 or not. Setting up the appropriate augmented matrix and applying the Gauss-Jordan algorithm gives

$$
\left[\begin{array}{lll|l}
2 & 1 & 1 & 0 \\
1 & 2 & 1 & 0 \\
1 & 1 & 2 & 0
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{2}}{ } \Longrightarrow \begin{gathered}
R_{1}-3 R_{3} \\
\\
R_{2}+R_{3}
\end{gathered}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],
$$

where the calculation proceeds exactly as the one above for a, except that the right-hand side column remains all 0 s throughout. It follows that the only way to make the linear combination of the vectors add up to $\mathbf{0}$ is to have $a=b=c=0$, so the three vectors are linearly independent.
4. As in $\mathbf{2}$, let $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$. In addition, let $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right]$.
a. Determine whether $\mathbf{x} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. [8]
b. Determine whether \mathbf{u}, \mathbf{v}, and \mathbf{w} are linearly dependent or independent. [2]

Solutions. a. By definition, $\mathbf{x} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ if there are scalars a, b, and c such that $a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=\mathbf{x}$. As always, we set up the appropriate augmented matrix and apply the Gauss-Jordan algorithm:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 2 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & 2
\end{array}\right] \begin{gathered}
R_{2}-R_{1} \\
R_{3}-R_{1} \\
R_{4}-R_{1}
\end{gathered}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & -2 & -2 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

We stop at this point because we have enough to determine that there is no solution: the last row corresponds to the equation $0 a+0 b+0 c=1 \ldots$ It follows that \mathbf{x} is not in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
b. By definition, \mathbf{u}, \mathbf{v}, and \mathbf{w} are linearly independent if the only scalars a, b, and c such that $a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=\mathbf{0}$ are $a=b=c=0$. Setting up the coresponding augmented matrix and applying the first step of the Gauss-Jordan algorithm gives us:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
1 & -1 & -1 & 0 \\
1 & 1 & -1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \begin{array}{c}
R_{2}-R_{1} \\
R_{3}-R_{1} \\
R_{4}-R_{1}
\end{array}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \underset{\substack{ \\
-\frac{1}{2} R_{2} \\
-\frac{1}{2} R_{3}}}{ }\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \stackrel{R_{1}-R_{2}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \stackrel{R_{3}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This means that $a=b=c=0$ is the only solution, so \mathbf{u}, \mathbf{v}, and \mathbf{w} are linearly independent.

Note: The above solution for \mathbf{b} is the brute-force approach. A more efficient way to get the job done, given the solution to a above, is to observe that . . .

$$
[\text { Total }=40]
$$

